Skip to main content

Featransform is an automated feature engineering framework for Supervised Machine Learning

Project description

LinkedIn Contributors Stargazers MIT License Downloads Month Downloads


Featransform - Automated Feature Engineering Framework for Supervised Machine Learning

Framework Contextualization

The Featransform project constitutes an objective and integrated proposition to automate feature engineering through the integration of various approachs of input pattern recognition known in Machine Learning such as dimensionality reduction, anomaly detection, clustering approaches and datetime feature constrution. This package provides an ensemble of diverse applications of each specific approach, aggregating and generating them all as added feature engineered features based on the original input features.

In order to avoid generation of noisy data for predictive consumption, after the engineered features ensemble are concatenated with the original features, a backwards wrapper feature selection also known as backward elimination is implemented to iteratively remove features based on evaluation of relevance, maintaining only valuable columns available for future models performance improvement purposes.

The architecture design includes three main sections, these being: data preprocessing, diverse feature engineering ensembles and optimized feature selection validation.

This project aims at providing the following application capabilities:

  • General applicability on tabular datasets: The developed feature engineering procedures are applicable on any data table associated with any Supervised ML scopes, based on input data columns to be built up on.

  • Improvement of predictive results: The application of the Featransform aims at improve the predictive performance of future applied Machine Learning models through added feature construction, increased pattern recognition and optimization of existing input features.

  • Continuous integration: After the train data is fitted, the created object can be saved and implemented in future data with the same structure.

Main Development Tools

Major frameworks used to built this project:

Where to get it

Binary installer for the latest released version is available at the Python Package Index (PyPI).

The source code is currently hosted on GitHub at: https://github.com/TsLu1s/Featransform

Installation

To install this package from Pypi repository run the following command:

pip install featransform

Usage Example

Featransform - Automated Feature Engineering Pipeline

In order to be able to apply the automated feature engineering featransform pipeline you need first to import the package. The following needed step is to load a dataset and define your to be predicted target column name into the variable target. You can customize the fit_engineering method by altering the following running pipeline parameters:

  • validation_split: Division ratio in which the feature engineering methods will be evaluated within the loaded Dataset (range: [0.05, 0.45]).
  • optimize_iters: Number of iterations generated for backwards feature selection optimization.
  • configs: Nested dictionary in which are contained all methods specific parameters configurations. Feel free to customize each method as you see fit (customization example shown bellow);

Relevant Note:

  • Although functional, Featransform pipeline is not optimized for big data purposes yet.
    
import pandas as pd
from sklearn.model_selection import train_test_split
from featransform.pipeline import (Featransform,
                                   configurations)
import warnings
warnings.filterwarnings("ignore", category=Warning) # -> For a clean console
    
data = pd.read_csv('csv_directory_path', encoding='latin', delimiter=',') # Dataframe Loading Example

train,test = train_test_split(data, train_size=0.8)
train,test = train.reset_index(drop=True), test.reset_index(drop=True) # -> Required 


# Load and Customize Parameters

configs = configurations()
print(configs)

configs['Unsupervised']['Isolation_Forest']['n_estimators'] = 300
configs['Clustering']['KMeans']['n_clusters'] = 3
configs['DimensionalityReduction']['UMAP']['n_components'] = 6

## Fit Data

ft = Featransform(validation_split = 0.30, # validation_split:float, optimize_iters:int
                  optimize_iters = 10,
                  configs = configs)

ft.fit_engineering(X = train,              # X:pd.DataFrame, target:str="Target_Column"
                   target = "Target_Column_Name")

## Transform Data 

train = ft.transform(X=train)
test = ft.transform(X=test)

# Export Featransform Metadata

import pickle
output = open("ft_eng.pkl", 'wb')
pickle.dump(ft, output)
    

Further Implementations

Further automated and customizable feature engineering ensemble methods applications can be checked here: Featransform Examples

License

Distributed under the MIT License. See LICENSE for more information.

Contact

Luis Santos - LinkedIn

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

featransform-0.9.21-py3-none-any.whl (19.0 kB view details)

Uploaded Python 3

File details

Details for the file featransform-0.9.21-py3-none-any.whl.

File metadata

File hashes

Hashes for featransform-0.9.21-py3-none-any.whl
Algorithm Hash digest
SHA256 403343e765c82ca6331eaee31907d06e33233cae288c52e207c6c63c00629b10
MD5 2f20ab3134afa5453ca874396a49918f
BLAKE2b-256 30a917d57cfe130e3179f0624d84ec7e08d971616b592388716c95a43b73257c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page