Skip to main content

Feature engineering package with Scikit-learn's fit transform functionality

Project description

Feature Engine

Python 3.6 Python 3.7 Python 3.8 License CircleCI Documentation Status

Feature-engine is a Python library with multiple transformers to engineer features for use in machine learning models. Feature-engine's transformers follow Scikit-learn functionality with fit() and transform() methods to first learn the transforming paramenters from data and then transform the data.

Feature-engine features in the following resources:

Blogs about Feature-engine:

Documentation

Current Feature-engine's transformers include functionality for:

  • Missing data imputation
  • Categorical variable encoding
  • Outlier removal
  • Discretisation
  • Numerical Variable Transformation

Imputing Methods

  • MeanMedianImputer
  • RandomSampleImputer
  • EndTailImputer
  • AddNaNBinaryImputer
  • CategoricalVariableImputer
  • FrequentCategoryImputer
  • ArbitraryNumberImputer

Encoding Methods

  • CountFrequencyCategoricalEncoder
  • OrdinalCategoricalEncoder
  • MeanCategoricalEncoder
  • WoERatioCategoricalEncoder
  • OneHotCategoricalEncoder
  • RareLabelCategoricalEncoder

Outlier Handling methods

  • Winsorizer
  • ArbitraryOutlierCapper
  • OutlierTrimmer

Discretisation methods

  • EqualFrequencyDiscretiser
  • EqualWidthDiscretiser
  • DecisionTreeDiscretiser
  • UserInputDiscreriser

Variable Transformation methods

  • LogTransformer
  • ReciprocalTransformer
  • PowerTransformer
  • BoxCoxTransformer
  • YeoJohnsonTransformer

Scikit-learn Wrapper:

  • SklearnTransformerWrapper

Installing

pip install feature_engine

or

git clone https://github.com/solegalli/feature_engine.git

Usage

>>> from feature_engine.categorical_encoders import RareLabelCategoricalEncoder
>>> import pandas as pd

>>> data = {'var_A': ['A'] * 10 + ['B'] * 10 + ['C'] * 2 + ['D'] * 1}
>>> data = pd.DataFrame(data)
>>> data['var_A'].value_counts()
Out[1]:
A    10
B    10
C     2
D     1
Name: var_A, dtype: int64
>>> rare_encoder = RareLabelCategoricalEncoder(tol=0.10, n_categories=3)
>>> data_encoded = rare_encoder.fit_transform(data)
>>> data_encoded['var_A'].value_counts()
Out[2]:
A       10
B       10
Rare     3
Name: var_A, dtype: int64

See more usage examples in the jupyter notebooks in the example folder of this repository, or in the documentation: http://feature-engine.readthedocs.io

Contributing

Local Setup Steps

  • Clone the repo and cd into it
  • Run pip install tox
  • Run tox if the tests pass, your local setup is complete

Opening Pull Requests

PR's are welcome! Please make sure the CI tests pass on your branch.

License

BSD 3-Clause

Authors

References

Many of the engineering and encoding functionality is inspired by this series of articles from the 2009 KDD competition.

To learn more about the rationale, functionality, pros and cos of each imputer, encoder and transformer, refer to the Feature Engineering for Machine Learning, Online Course

For a summary of the methods check this presentation and this article

To stay alert of latest releases, sign up at trainindata

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

feature_engine-0.5.3.tar.gz (26.0 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

feature_engine-0.5.3-py2.py3-none-any.whl (30.2 kB view details)

Uploaded Python 2Python 3

File details

Details for the file feature_engine-0.5.3.tar.gz.

File metadata

  • Download URL: feature_engine-0.5.3.tar.gz
  • Upload date:
  • Size: 26.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.2

File hashes

Hashes for feature_engine-0.5.3.tar.gz
Algorithm Hash digest
SHA256 eaa8b9ef9790c3d935377dad7f14d1c10627889633a52d206893a8d214fdc30f
MD5 5d4ac95b8c80353047fb78f4f1fde8ee
BLAKE2b-256 861a013d2cba33bb9a61f26130fdc73b10c8115bfe15447917a359137e8baf6c

See more details on using hashes here.

File details

Details for the file feature_engine-0.5.3-py2.py3-none-any.whl.

File metadata

  • Download URL: feature_engine-0.5.3-py2.py3-none-any.whl
  • Upload date:
  • Size: 30.2 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.2

File hashes

Hashes for feature_engine-0.5.3-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 162e3cba6873b1f0914e95f73ffaaec4d51d9a57da493152a1e0d46d8a35c43e
MD5 43bf22d8a2bbf8373ef34c558122c4b4
BLAKE2b-256 d45ce1bf39ab253b43893f235955538cd6ea1b9d7098829ffc97991a165674e5

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page