Skip to main content

Feature selection with FDR control.

Project description

>>> import numpy as np
>>> from fs_fdr import barber_candes_selection, knockoff_features_construction, utils
>>>
>>> from sklearn.ensemble import GradientBoostingClassifier
>>> #######################################################################################
>>> #### Simulate data to check the performance of the methods.
>>> #######################################################################################
>>>
>>>
>>> type = "classification"
>>> # First simulate some data
>>> n, p, p1 = 1000, 50, 20
>>> rho = 0.
>>> mean = 0.
>>> sd = 1.
>>> error_std = 1.
>>> r = ["uniform", .0, .5]
>>> x = mean + sd * np.random.normal(0., 1., size=(n, p))
>>> true_w = np.random.uniform(r[1], r[2], size=(p1, 1))
>>> negate = np.random.binomial(n=1, p=.5, size=(p1, 1))
>>> negate[np.where(negate==0.), :] = -1
>>> true_w = true_w * negate
>>> true_index = np.random.choice(np.arange(p), size = p1, replace=False)
>>> true_index = np.sort(true_index)
>>> xbeta = np.dot(x[:, true_index], true_w)
>>> pr = 1/(1+np.exp(-xbeta))
>>> t = (pr > .5) + 0.
>>>
>>> q = .1
>>> # Step 2: Create knockoff features using the knockoff_method library
>>>
>>> # Set parameters
>>>
>>> selection_method = "knockoff-MX"
>>> optimization = ["ASDP", "selfblocks", 50, 50]
>>>
>>> VI_stat = "Diff"
>>>
>>>
>>> myknockoff = knockoff_features_construction.Knockoff(x, selection_method, optimization)
>>> knockoff_attrs = myknockoff.knockoff_features()
>>> x, x_tilda = knockoff_attrs.X, knockoff_attrs.X_tilde
>>>
>>>
>>>
>>> modeling = {"model":"gradient boosting", "params":"classification fi"}
>>>
>>>
>>> data = [x, x_tilda, t]
>>> knockoff_selection = barber_candes_selection.BarberCandesSelection(data, modeling, selection_method,q=q, VI_stat=VI_stat).selection()
>>>
>>> S_knock = knockoff_selection.S
>>> FDR_UB = knockoff_selection.FDR_UB
>>>
>>>
>>>
>>> fdr_knock = 100*utils.FDR(S_knock, true_index)
>>> power_knock = 100*utils.power(S_knock, true_index)
>>> fnp_knock = 100*utils.FNP(S_knock, true_index, p)
>>> print('------------Knockoff ({})-------------'.format(modeling["model"]))
>>> print("Empirical FDR: " + str(100*np.round(FDR_UB, 2)) + "%")
>>> print("FDR:  " +str(fdr_knock) + "%")
>>> print("power:  "+str(power_knock) + "%")
>>> print("FNP:  "+str(fnp_knock) + "%")
>>>
>>>
>>> ##########DSS
>>>
>>>
>>> modeling = {"model":"gradient boosting", "params":"classification fi"}
>>> selection_method = "DSS"
>>> data = [x, t]
>>> split_type = ["sampling", 5, 5]
>>> prob = .7
>>> DSS_selection = barber_candes_selection.BarberCandesSelection(data, modeling, selection_method,q=q).selection()
>>>
>>> S_dss = DSS_selection.S
>>> FDR_UB = DSS_selection.FDR_UB
>>>
>>>
>>>
>>> fdr_dss = 100*utils.FDR(S_dss, true_index)
>>> power_dss = 100*utils.power(S_dss, true_index)
>>> fnp_dss = 100*utils.FNP(S_dss, true_index, p)
>>> print('------------DSS ({})-------------'.format(modeling["model"]))
>>> print("Empirical FDR: " + str(100*np.round(FDR_UB, 2)) + "%")
>>> print("FDR:  " +str(fdr_dss) + "%")
>>> print("power:  "+str(power_dss) + "%")
>>> print("FNP:  "+str(fnp_dss) + "%")
>>>
>>>
>>>
>>> ############### SVM
>>>
>>> modeling = {"model": "not specified", "params":"given"}
>>>
>>> from sklearn.svm import SVC
>>>
>>> svm = SVC(C=1., kernel="linear")
>>> svm_w = svm.fit(np.hstack((x, x_tilda)), t.ravel()).coef_
>>>
>>> selection_method = "knockoff"
>>> knockoff_selection = barber_candes_selection.BarberCandesSelection(modeling=modeling, selection_method=selection_method, w = svm_w).selection()
>>>
>>> S_knock = knockoff_selection.S
>>> FDR_UB = knockoff_selection.FDR_UB
>>> print("empirical FDR: " + str(100*np.round(FDR_UB, 2)))
>>>
>>> fdr_knock = 100*utils.FDR(S_knock, true_index)
>>> power_knock = 100*utils.power(S_knock, true_index)
>>> fnp_knock = 100*utils.FNP(S_knock, true_index, p)
>>> print('------------Knockoff ({})-------------'.format(modeling["model"]))
>>> print("Empirical FDR: " + str(100*np.round(FDR_UB, 2)) + "%")
>>> print("FDR:  " +str(fdr_knock) + "%")
>>> print("power:  "+str(power_knock) + "%")
>>> print("FNP:  "+str(fnp_knock) + "%")

Project details


Release history Release notifications

This version

0.1

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for feature-selection-fdr, version 0.1
Filename, size File type Python version Upload date Hashes
Filename, size feature_selection_fdr-0.1.tar.gz (18.8 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page