No project description provided
Project description
featureflow
featureflow is a python library that allows users to build feature extraction pipelines in a declarative way, and control how and where those features are persisted.
Usage
The following example will compute word frequency in individual text documents, and then over the entire corpus of documents, but featureflow isn’t limited to text data. It’s designed to work well with sequential/streaming data (e.g. audio or video) that is often processed iteratively, in small chunks.
You can see all the code in this example in one place here.
We can define a graph of processing nodes like this:
import featureflow as ff
@ff.simple_in_memory_settings
class Document(ff.BaseModel):
"""
Define the processing graph needed to extract document-level features,
whether, and how those features should be persisted.
"""
raw = ff.ByteStreamFeature(
ff.ByteStream,
chunksize=128,
store=True)
checksum = ff.JSONFeature(
CheckSum,
needs=raw,
store=True)
tokens = ff.Feature(
Tokenizer,
needs=raw,
store=False)
counts = ff.JSONFeature(
WordCount,
needs=tokens,
store=True)
We can define the individual processing “nodes” referenced in the graph above like this:
import featureflow as ff
from collections import Counter
import re
import hashlib
class Tokenizer(ff.Node):
"""
Tokenize a stream of text into individual, normalized (lowercase)
words/tokens
"""
def __init__(self, needs=None):
super(Tokenizer, self).__init__(needs=needs)
self._cache = ''
self._pattern = re.compile('(?P<word>[a-zA-Z]+)\W+')
def _enqueue(self, data, pusher):
self._cache += data.decode()
def _dequeue(self):
matches = list(self._pattern.finditer(self._cache))
if not matches:
raise ff.NotEnoughData()
last_boundary = matches[-1].end()
self._cache = self._cache[last_boundary:]
return matches
def _process(self, data):
yield map(lambda x: x.groupdict()['word'].lower(), data)
class WordCount(ff.Aggregator, ff.Node):
"""
Keep track of token frequency
"""
def __init__(self, needs=None):
super(WordCount, self).__init__(needs=needs)
self._cache = Counter()
def _enqueue(self, data, pusher):
self._cache.update(data)
class CheckSum(ff.Aggregator, ff.Node):
"""
Compute the checksum of a text stream
"""
def __init__(self, needs=None):
super(CheckSum, self).__init__(needs=needs)
self._cache = hashlib.sha256()
def _enqueue(self, data, pusher):
self._cache.update(data)
def _process(self, data):
yield data.hexdigest()
We can also define a graph that will process an entire corpus of stored document features:
import featureflow as ff
@ff.simple_in_memory_settings
class Corpus(ff.BaseModel):
"""
Define the processing graph needed to extract corpus-level features,
whether, and how those features should be persisted.
"""
docs = ff.Feature(
lambda doc_cls: (doc.counts for doc in doc_cls),
store=False)
total_counts = ff.JSONFeature(
WordCount,
needs=docs,
store=True)
Finally, we can execute these processing graphs and access the stored features like this:
from __future__ import print_function
import argparse
def process_urls(urls):
for url in urls:
Document.process(raw=url)
def summarize_document(doc):
return 'doc {_id} with checksum {cs} contains "the" {n} times'.format(
_id=doc._id,
cs=doc.checksum,
n=doc.counts.get('the', 0))
def process_corpus(document_cls):
corpus_id = Corpus.process(docs=document_cls)
return Corpus(corpus_id)
def summarize_corpus(corpus):
return 'The entire text corpus contains "the" {n} times'.format(
n=corpus.total_counts.get("the", 0))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--url',
help='specify one or more urls of text files to ingest',
required=True,
action='append')
args = parser.parse_args()
process_urls(args.url)
for doc in Document:
print(summarize_document(doc))
corpus = process_corpus(Document)
print(summarize_corpus(corpus))
To see this in action we can:
python wordcount.py \
--url http://textfiles.com/food/1st_aid.txt \
--url http://textfiles.com/food/antibiot.txt \
...
Installation
Python headers are required. You can install by running:
apt-get install python-dev
Numpy is optional. If you’d like to use it, the Anaconda distribution is highly recommended.
Finally, just
pip install featureflow
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file featureflow-3.0.3.tar.gz
.
File metadata
- Download URL: featureflow-3.0.3.tar.gz
- Upload date:
- Size: 36.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 23624903672b611bb30be622eb46e058e4b37c8e4983ad6686f98cc4666997e8 |
|
MD5 | 952a83f5a67963a311c35d5fc8a2182e |
|
BLAKE2b-256 | 5c867f0e83f59b92666dea3065eb8998df85ba00122e4554c353ee821fa67d64 |
File details
Details for the file featureflow-3.0.3-py3.7.egg
.
File metadata
- Download URL: featureflow-3.0.3-py3.7.egg
- Upload date:
- Size: 122.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c7673e14320850e4ef5bb06e641bf22a732d66bf0c9eddded0c899fffc54b1c5 |
|
MD5 | 784c77ad4990323ae4abeb4baa7c2de6 |
|
BLAKE2b-256 | 666702d4cb857106345315cbb180730a4287459f4bfd68e3381e077ba2e7deb9 |