Skip to main content

No project description provided

Project description

Build Status Coverage Status Python 3 PyPI License: MIT

featureflow

featureflow is a python library that allows users to build feature extraction pipelines in a declarative way, and control how and where those features are persisted.

Usage

The following example will compute word frequency in individual text documents, and then over the entire corpus of documents, but featureflow isn’t limited to text data. It’s designed to work well with sequential/streaming data (e.g. audio or video) that is often processed iteratively, in small chunks.

You can see all the code in this example in one place here.

We can define a graph of processing nodes like this:

import featureflow as ff


@ff.simple_in_memory_settings
class Document(ff.BaseModel):
    """
    Define the processing graph needed to extract document-level features,
    whether, and how those features should be persisted.
    """
    raw = ff.ByteStreamFeature(
        ff.ByteStream,
        chunksize=128,
        store=True)

    checksum = ff.JSONFeature(
        CheckSum,
        needs=raw,
        store=True)

    tokens = ff.Feature(
        Tokenizer,
        needs=raw,
        store=False)

    counts = ff.JSONFeature(
        WordCount,
        needs=tokens,
        store=True)

We can define the individual processing “nodes” referenced in the graph above like this:

import featureflow as ff
from collections import Counter
import re
import hashlib

class Tokenizer(ff.Node):
    """
    Tokenize a stream of text into individual, normalized (lowercase)
    words/tokens
    """
    def __init__(self, needs=None):
        super(Tokenizer, self).__init__(needs=needs)
        self._cache = ''
        self._pattern = re.compile('(?P<word>[a-zA-Z]+)\W+')

    def _enqueue(self, data, pusher):
        self._cache += data.decode()

    def _dequeue(self):
        matches = list(self._pattern.finditer(self._cache))
        if not matches:
            raise ff.NotEnoughData()
        last_boundary = matches[-1].end()
        self._cache = self._cache[last_boundary:]
        return matches

    def _process(self, data):
        yield map(lambda x: x.groupdict()['word'].lower(), data)


class WordCount(ff.Aggregator, ff.Node):
    """
    Keep track of token frequency
    """
    def __init__(self, needs=None):
        super(WordCount, self).__init__(needs=needs)
        self._cache = Counter()

    def _enqueue(self, data, pusher):
        self._cache.update(data)


class CheckSum(ff.Aggregator, ff.Node):
    """
    Compute the checksum of a text stream
    """
    def __init__(self, needs=None):
        super(CheckSum, self).__init__(needs=needs)
        self._cache = hashlib.sha256()

    def _enqueue(self, data, pusher):
        self._cache.update(data)

    def _process(self, data):
        yield data.hexdigest()

We can also define a graph that will process an entire corpus of stored document features:

import featureflow as ff

@ff.simple_in_memory_settings
class Corpus(ff.BaseModel):
    """
    Define the processing graph needed to extract corpus-level features,
    whether, and how those features should be persisted.
    """
    docs = ff.Feature(
        lambda doc_cls: (doc.counts for doc in doc_cls),
        store=False)

    total_counts = ff.JSONFeature(
        WordCount,
        needs=docs,
        store=True)

Finally, we can execute these processing graphs and access the stored features like this:

from __future__ import print_function
import argparse

def process_urls(urls):
    for url in urls:
        Document.process(raw=url)


def summarize_document(doc):
    return 'doc {_id} with checksum {cs} contains "the" {n} times'.format(
            _id=doc._id,
            cs=doc.checksum,
            n=doc.counts.get('the', 0))


def process_corpus(document_cls):
    corpus_id = Corpus.process(docs=document_cls)
    return Corpus(corpus_id)


def summarize_corpus(corpus):
    return 'The entire text corpus contains "the" {n} times'.format(
        n=corpus.total_counts.get("the", 0))


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '--url',
        help='specify one or more urls of text files to ingest',
        required=True,
        action='append')
    args = parser.parse_args()

    process_urls(args.url)

    for doc in Document:
        print(summarize_document(doc))

    corpus = process_corpus(Document)
    print(summarize_corpus(corpus))

To see this in action we can:

python wordcount.py \
    --url http://textfiles.com/food/1st_aid.txt \
    --url http://textfiles.com/food/antibiot.txt \
    ...

Installation

Python headers are required. You can install by running:

apt-get install python-dev

Numpy is optional. If you’d like to use it, the Anaconda distribution is highly recommended.

Finally, just

pip install featureflow

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

featureflow-3.0.3.tar.gz (36.0 kB view details)

Uploaded Source

Built Distribution

featureflow-3.0.3-py3.7.egg (122.1 kB view details)

Uploaded Source

File details

Details for the file featureflow-3.0.3.tar.gz.

File metadata

  • Download URL: featureflow-3.0.3.tar.gz
  • Upload date:
  • Size: 36.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for featureflow-3.0.3.tar.gz
Algorithm Hash digest
SHA256 23624903672b611bb30be622eb46e058e4b37c8e4983ad6686f98cc4666997e8
MD5 952a83f5a67963a311c35d5fc8a2182e
BLAKE2b-256 5c867f0e83f59b92666dea3065eb8998df85ba00122e4554c353ee821fa67d64

See more details on using hashes here.

File details

Details for the file featureflow-3.0.3-py3.7.egg.

File metadata

  • Download URL: featureflow-3.0.3-py3.7.egg
  • Upload date:
  • Size: 122.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for featureflow-3.0.3-py3.7.egg
Algorithm Hash digest
SHA256 c7673e14320850e4ef5bb06e641bf22a732d66bf0c9eddded0c899fffc54b1c5
MD5 784c77ad4990323ae4abeb4baa7c2de6
BLAKE2b-256 666702d4cb857106345315cbb180730a4287459f4bfd68e3381e077ba2e7deb9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page