Skip to main content

FeatureLayers Package

Project description

FeatureLayers

Installation

pip install featurelayers

Usage

import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Flatten
from featurelayers.layers.LBC import LBC

# Create a simple Keras model
model = Sequential()
# Add the LBC layer as the first layer in the model
model.add(LBC(filters=32, kernel_size=3, stride=1, padding='same', activation='relu', sparsity=0.9, name='lbc_layer'))
# Add a Flatten layer to convert the output to 1D
model.add(Flatten())
# Add a Dense layer for classification
model.add(Dense(units=10, activation='softmax'))

# Compile the model
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

# Generate some dummy data
x_train = np.random.rand(100, 28, 28, 1)
y_train = np.random.randint(0, 10, size=(100,))

# Convert the labels to one-hot encoding
y_train = keras.utils.to_categorical(y_train, num_classes=10)

# Train the model
model.fit(x_train, y_train, epochs=10, batch_size=32)

version = ""1.2.4""

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

featurelayers-1.2.4.tar.gz (3.5 kB view details)

Uploaded Source

Built Distribution

featurelayers-1.2.4-py3-none-any.whl (4.2 kB view details)

Uploaded Python 3

File details

Details for the file featurelayers-1.2.4.tar.gz.

File metadata

  • Download URL: featurelayers-1.2.4.tar.gz
  • Upload date:
  • Size: 3.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for featurelayers-1.2.4.tar.gz
Algorithm Hash digest
SHA256 f450e8c5a6493a7f002c3fd5e382b9f461f39583922d9edfc497952da958f2f7
MD5 100207f899b2adec7bbb071179f770ed
BLAKE2b-256 b17f009f027d6e720c75739cc21c7bce60078791eb10a696c3aaf724c8305583

See more details on using hashes here.

File details

Details for the file featurelayers-1.2.4-py3-none-any.whl.

File metadata

File hashes

Hashes for featurelayers-1.2.4-py3-none-any.whl
Algorithm Hash digest
SHA256 11088c5da4420e26b3b2ffae120db61c8f07c4a2ec91a186f96eddc5fe2dc662
MD5 a495af2866dc9fd164ecce2ec7c35c03
BLAKE2b-256 49f3dd70cb4d71465f62c995fab81dc3e2e6eaca0e254b295e7b2f7584e79747

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page