Skip to main content

FeatureLayers Package

Project description

FeatureLayers

Installation

pip install featurelayers

Usage

import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Flatten
from featurelayers.layers.LBC import LBC

# Create a simple Keras model
model = Sequential()
# Add the LBC layer as the first layer in the model
model.add(LBC(filters=32, kernel_size=3, stride=1, padding='same', activation='relu', sparsity=0.9, name='lbc_layer'))
# Add a Flatten layer to convert the output to 1D
model.add(Flatten())
# Add a Dense layer for classification
model.add(Dense(units=10, activation='softmax'))

# Compile the model
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

# Generate some dummy data
x_train = np.random.rand(100, 28, 28, 1)
y_train = np.random.randint(0, 10, size=(100,))

# Convert the labels to one-hot encoding
y_train = keras.utils.to_categorical(y_train, num_classes=10)

# Train the model
model.fit(x_train, y_train, epochs=10, batch_size=32)

version = ""1.2.6""

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

featurelayers-1.2.6.tar.gz (3.4 kB view details)

Uploaded Source

Built Distribution

featurelayers-1.2.6-py3-none-any.whl (4.1 kB view details)

Uploaded Python 3

File details

Details for the file featurelayers-1.2.6.tar.gz.

File metadata

  • Download URL: featurelayers-1.2.6.tar.gz
  • Upload date:
  • Size: 3.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for featurelayers-1.2.6.tar.gz
Algorithm Hash digest
SHA256 9afa5eff37306ac4db0be3515fb51785f7e2f830b189a7c81798cbedfc33565e
MD5 1b184adf70dec28d95111a2194119cd3
BLAKE2b-256 d175d083c18847c9cb2a5cfa36651392a426c5ec2cdd6f6e161a6410d4da257d

See more details on using hashes here.

File details

Details for the file featurelayers-1.2.6-py3-none-any.whl.

File metadata

File hashes

Hashes for featurelayers-1.2.6-py3-none-any.whl
Algorithm Hash digest
SHA256 14a82892e474b3695155366a9e3986957224dd658c0f6264714e9a2153728a39
MD5 5acf4ffde41399b8192d5f1e753e3a32
BLAKE2b-256 2c3a8786d06fe7b22f0b880f4fd97adfb33accb4ad393dbd062fa06d6ae05e98

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page