FeatureLayers Package
Project description
FeatureLayers
Installation
pip install featurelayers
Usage
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Flatten
from featurelayers.layers.LBC import LBC
# Create a simple Keras model
model = Sequential()
# Add the LBC layer as the first layer in the model
model.add(LBC(filters=32, kernel_size=3, stride=1, padding='same', activation='relu', sparsity=0.9, name='lbc_layer'))
# Add a Flatten layer to convert the output to 1D
model.add(Flatten())
# Add a Dense layer for classification
model.add(Dense(units=10, activation='softmax'))
# Compile the model
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
# Generate some dummy data
x_train = np.random.rand(100, 28, 28, 1)
y_train = np.random.randint(0, 10, size=(100,))
# Convert the labels to one-hot encoding
y_train = keras.utils.to_categorical(y_train, num_classes=10)
# Train the model
model.fit(x_train, y_train, epochs=10, batch_size=32)
version = ""1.2.6""
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
featurelayers-1.2.6.tar.gz
(3.4 kB
view details)
Built Distribution
File details
Details for the file featurelayers-1.2.6.tar.gz
.
File metadata
- Download URL: featurelayers-1.2.6.tar.gz
- Upload date:
- Size: 3.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9afa5eff37306ac4db0be3515fb51785f7e2f830b189a7c81798cbedfc33565e |
|
MD5 | 1b184adf70dec28d95111a2194119cd3 |
|
BLAKE2b-256 | d175d083c18847c9cb2a5cfa36651392a426c5ec2cdd6f6e161a6410d4da257d |
File details
Details for the file featurelayers-1.2.6-py3-none-any.whl
.
File metadata
- Download URL: featurelayers-1.2.6-py3-none-any.whl
- Upload date:
- Size: 4.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 14a82892e474b3695155366a9e3986957224dd658c0f6264714e9a2153728a39 |
|
MD5 | 5acf4ffde41399b8192d5f1e753e3a32 |
|
BLAKE2b-256 | 2c3a8786d06fe7b22f0b880f4fd97adfb33accb4ad393dbd062fa06d6ae05e98 |