Skip to main content

FeatureLayers Package

Project description

FeatureLayers

Installation

pip install featurelayers

Usage

LBC Layers

import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Flatten
from featurelayers.layers.LBC import LBC

# Create a simple Keras model
model = Sequential()
# Add the LBC layer as the first layer in the model
model.add(LBC(filters=32, kernel_size=3, stride=1, padding='same', activation='relu', sparsity=0.9, name='lbc_layer'))
# Add a Flatten layer to convert the output to 1D
model.add(Flatten())
# Add a Dense layer for classification
model.add(Dense(units=10, activation='softmax'))

# Compile the model
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

# Generate some dummy data
x_train = np.random.rand(100, 28, 28, 1)
y_train = np.random.randint(0, 10, size=(100,))

# Convert the labels to one-hot encoding
y_train = keras.utils.to_categorical(y_train, num_classes=10)

# Train the model
model.fit(x_train, y_train, epochs=10, batch_size=32)

version = ""1.4.5""

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

featurelayers-1.4.5.tar.gz (3.4 kB view details)

Uploaded Source

Built Distribution

featurelayers-1.4.5-py3-none-any.whl (4.1 kB view details)

Uploaded Python 3

File details

Details for the file featurelayers-1.4.5.tar.gz.

File metadata

  • Download URL: featurelayers-1.4.5.tar.gz
  • Upload date:
  • Size: 3.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for featurelayers-1.4.5.tar.gz
Algorithm Hash digest
SHA256 4061725ddf897663b83276dd53a27512da3aa6914b823bd5b326fe3c4f899c38
MD5 3ce11c2a834043976225a9f5d41675ac
BLAKE2b-256 323a0d7bc9f2407a2f0d24fdd1432e4e7e12be4861103073508a19c3fb43b809

See more details on using hashes here.

File details

Details for the file featurelayers-1.4.5-py3-none-any.whl.

File metadata

File hashes

Hashes for featurelayers-1.4.5-py3-none-any.whl
Algorithm Hash digest
SHA256 0b53d92b1dc23ad8d9934856da40884b0f16ba91ba4f0118d5399c2be415f7c6
MD5 4d569614ada894564d4e4b5b6f5b0236
BLAKE2b-256 1564123de2fb62c5588aa3ad46bce93180d45b298900f06a59af55cb383cbb58

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page