FeatureLayers Package
Project description
FeatureLayers
Installation
pip install featurelayers
Usage
LBC Layers
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Flatten
from featurelayers.layers.LBC import LBC
# Create a simple Keras model
model = Sequential()
# Add the LBC layer as the first layer in the model
model.add(LBC(filters=32, kernel_size=3, stride=1, padding='same', activation='relu', sparsity=0.9, name='lbc_layer'))
# Add a Flatten layer to convert the output to 1D
model.add(Flatten())
# Add a Dense layer for classification
model.add(Dense(units=10, activation='softmax'))
# Compile the model
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
# Generate some dummy data
x_train = np.random.rand(100, 28, 28, 1)
y_train = np.random.randint(0, 10, size=(100,))
# Convert the labels to one-hot encoding
y_train = keras.utils.to_categorical(y_train, num_classes=10)
# Train the model
model.fit(x_train, y_train, epochs=10, batch_size=32)
version = ""1.4.5""
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
featurelayers-1.4.5.tar.gz
(3.4 kB
view details)
Built Distribution
File details
Details for the file featurelayers-1.4.5.tar.gz
.
File metadata
- Download URL: featurelayers-1.4.5.tar.gz
- Upload date:
- Size: 3.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4061725ddf897663b83276dd53a27512da3aa6914b823bd5b326fe3c4f899c38 |
|
MD5 | 3ce11c2a834043976225a9f5d41675ac |
|
BLAKE2b-256 | 323a0d7bc9f2407a2f0d24fdd1432e4e7e12be4861103073508a19c3fb43b809 |
File details
Details for the file featurelayers-1.4.5-py3-none-any.whl
.
File metadata
- Download URL: featurelayers-1.4.5-py3-none-any.whl
- Upload date:
- Size: 4.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0b53d92b1dc23ad8d9934856da40884b0f16ba91ba4f0118d5399c2be415f7c6 |
|
MD5 | 4d569614ada894564d4e4b5b6f5b0236 |
|
BLAKE2b-256 | 1564123de2fb62c5588aa3ad46bce93180d45b298900f06a59af55cb383cbb58 |