Skip to main content

FeatureLayers Package

Project description

FeatureLayers

Installation

pip install featurelayers

Usage

LBC Layers

import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Flatten
from featurelayers.layers.LBC import LBC

# Create a simple Keras model
model = Sequential()
# Add the LBC layer as the first layer in the model
model.add(LBC(filters=32, kernel_size=3, stride=1, padding='same', activation='relu', sparsity=0.9, name='lbc_layer'))
# Add a Flatten layer to convert the output to 1D
model.add(Flatten())
# Add a Dense layer for classification
model.add(Dense(units=10, activation='softmax'))

# Compile the model
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

# Generate some dummy data
x_train = np.random.rand(100, 28, 28, 1)
y_train = np.random.randint(0, 10, size=(100,))

# Convert the labels to one-hot encoding
y_train = keras.utils.to_categorical(y_train, num_classes=10)

# Train the model
model.fit(x_train, y_train, epochs=10, batch_size=32)

version = ""1.4.6""

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

featurelayers-1.4.6.tar.gz (3.4 kB view details)

Uploaded Source

Built Distribution

featurelayers-1.4.6-py3-none-any.whl (4.1 kB view details)

Uploaded Python 3

File details

Details for the file featurelayers-1.4.6.tar.gz.

File metadata

  • Download URL: featurelayers-1.4.6.tar.gz
  • Upload date:
  • Size: 3.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for featurelayers-1.4.6.tar.gz
Algorithm Hash digest
SHA256 7c7577219f2ef60f0ef01031af3a86da3d8b9247408db7afb437605296f226d7
MD5 6e7e2fde54143dc3b93c5dd1b470cf87
BLAKE2b-256 9b3df72546faeab867583cbdbab8000cd39f67431c42e12f10772739d1747df4

See more details on using hashes here.

File details

Details for the file featurelayers-1.4.6-py3-none-any.whl.

File metadata

File hashes

Hashes for featurelayers-1.4.6-py3-none-any.whl
Algorithm Hash digest
SHA256 a6fd11c643d523734f80d6f4cc66291d228591b621e7f6e0d1689dc612344057
MD5 9e58824548c1a0c3ca0299d7791ebe51
BLAKE2b-256 a878966606a5069e9feb9cd965980fa8665859012adc8441faceed6388ced98f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page