FeatureLayers Package
Project description
FeatureLayers
Installation
pip install featurelayers
Usage
LBC Layers
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Flatten
from featurelayers.layers.LBC import LBC
# Create a simple Keras model
model = Sequential()
# Add the LBC layer as the first layer in the model
model.add(LBC(filters=32, kernel_size=3, stride=1, padding='same', activation='relu', sparsity=0.9, name='lbc_layer'))
# Add a Flatten layer to convert the output to 1D
model.add(Flatten())
# Add a Dense layer for classification
model.add(Dense(units=10, activation='softmax'))
# Compile the model
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
# Generate some dummy data
x_train = np.random.rand(100, 28, 28, 1)
y_train = np.random.randint(0, 10, size=(100,))
# Convert the labels to one-hot encoding
y_train = keras.utils.to_categorical(y_train, num_classes=10)
# Train the model
model.fit(x_train, y_train, epochs=10, batch_size=32)
version = ""1.4.7""
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
featurelayers-1.4.7.tar.gz
(3.5 kB
view details)
Built Distribution
File details
Details for the file featurelayers-1.4.7.tar.gz
.
File metadata
- Download URL: featurelayers-1.4.7.tar.gz
- Upload date:
- Size: 3.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c957e72a6daeaeab0f8d7fb4c50b3de4ec7ceb5b22c3763b660de9ba0bc915ca |
|
MD5 | f3ca59253eafc509b107dc38075d72b8 |
|
BLAKE2b-256 | 43a6db5cad74c709a9b4f1c1ed68b21fa86ec7c928d916e3f38dfa2f6059e40c |
File details
Details for the file featurelayers-1.4.7-py3-none-any.whl
.
File metadata
- Download URL: featurelayers-1.4.7-py3-none-any.whl
- Upload date:
- Size: 4.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | bfe77ee666cc179e41cb68ba4d36521e3e6a7186a4051b46d9bdd938770b807c |
|
MD5 | 566812eadc60df06b3b8a9abefed8b34 |
|
BLAKE2b-256 | 929f94bbe825e172dd5f42b2a1caa76bed1943e4526dac6148ceaece61949b1d |