Skip to main content

FeatureLayers Package

Project description

FeatureLayers

Installation

pip install featurelayers

Usage

LBC Layers

import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Flatten
from featurelayers.layers.LBC import LBC

# Create a simple Keras model
model = Sequential()
# Add the LBC layer as the first layer in the model
model.add(LBC(filters=32, kernel_size=3, stride=1, padding='same', activation='relu', sparsity=0.9, name='lbc_layer'))
# Add a Flatten layer to convert the output to 1D
model.add(Flatten())
# Add a Dense layer for classification
model.add(Dense(units=10, activation='softmax'))

# Compile the model
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

# Generate some dummy data
x_train = np.random.rand(100, 28, 28, 1)
y_train = np.random.randint(0, 10, size=(100,))

# Convert the labels to one-hot encoding
y_train = keras.utils.to_categorical(y_train, num_classes=10)

# Train the model
model.fit(x_train, y_train, epochs=10, batch_size=32)

version = ""1.5.2""

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

featurelayers-1.5.2.tar.gz (8.6 kB view details)

Uploaded Source

Built Distribution

featurelayers-1.5.2-py3-none-any.whl (12.4 kB view details)

Uploaded Python 3

File details

Details for the file featurelayers-1.5.2.tar.gz.

File metadata

  • Download URL: featurelayers-1.5.2.tar.gz
  • Upload date:
  • Size: 8.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for featurelayers-1.5.2.tar.gz
Algorithm Hash digest
SHA256 e279f48f38199156cdbdf96dae1127cf3915ed285646d215b23e089e77892d11
MD5 1b7f6153b31c8137ce4ea1c50ee353ac
BLAKE2b-256 d7d30671bfc8a83552abc2e3b0b8c5d3df08a2e933e87c4c1b3c729d30bb758e

See more details on using hashes here.

File details

Details for the file featurelayers-1.5.2-py3-none-any.whl.

File metadata

File hashes

Hashes for featurelayers-1.5.2-py3-none-any.whl
Algorithm Hash digest
SHA256 b9c82ec26a33825b3a27f0b93c9435cdfc6a240155538f6d8a5ea70922581e9d
MD5 d9ac7b706cdee23e94bf51ad5e590a62
BLAKE2b-256 ae3b941960d4576369cf3565e4eb7af8cd52e55a194891a1bbf71dfcd908c74a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page