FeatureLayers Package
Project description
FeatureLayers
Installation
pip install featurelayers
Usage
LBC Layers
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Flatten
from featurelayers.layers.LBC import LBC
# Create a simple Keras model
model = Sequential()
# Add the LBC layer as the first layer in the model
model.add(LBC(filters=32, kernel_size=3, stride=1, padding='same', activation='relu', sparsity=0.9, name='lbc_layer'))
# Add a Flatten layer to convert the output to 1D
model.add(Flatten())
# Add a Dense layer for classification
model.add(Dense(units=10, activation='softmax'))
# Compile the model
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
# Generate some dummy data
x_train = np.random.rand(100, 28, 28, 1)
y_train = np.random.randint(0, 10, size=(100,))
# Convert the labels to one-hot encoding
y_train = keras.utils.to_categorical(y_train, num_classes=10)
# Train the model
model.fit(x_train, y_train, epochs=10, batch_size=32)
version = ""1.5.2""
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
featurelayers-1.5.2.tar.gz
(8.6 kB
view details)
Built Distribution
File details
Details for the file featurelayers-1.5.2.tar.gz
.
File metadata
- Download URL: featurelayers-1.5.2.tar.gz
- Upload date:
- Size: 8.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e279f48f38199156cdbdf96dae1127cf3915ed285646d215b23e089e77892d11 |
|
MD5 | 1b7f6153b31c8137ce4ea1c50ee353ac |
|
BLAKE2b-256 | d7d30671bfc8a83552abc2e3b0b8c5d3df08a2e933e87c4c1b3c729d30bb758e |
File details
Details for the file featurelayers-1.5.2-py3-none-any.whl
.
File metadata
- Download URL: featurelayers-1.5.2-py3-none-any.whl
- Upload date:
- Size: 12.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b9c82ec26a33825b3a27f0b93c9435cdfc6a240155538f6d8a5ea70922581e9d |
|
MD5 | d9ac7b706cdee23e94bf51ad5e590a62 |
|
BLAKE2b-256 | ae3b941960d4576369cf3565e4eb7af8cd52e55a194891a1bbf71dfcd908c74a |