Skip to main content

FeatureLayers Package

Project description

FeatureLayers

Installation

pip install featurelayers

Usage

LBC Layers

import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Flatten
from featurelayers.layers.LBC import LBC

# Create a simple Keras model
model = Sequential()
# Add the LBC layer as the first layer in the model
model.add(LBC(filters=32, kernel_size=3, stride=1, padding='same', activation='relu', sparsity=0.9, name='lbc_layer'))
# Add a Flatten layer to convert the output to 1D
model.add(Flatten())
# Add a Dense layer for classification
model.add(Dense(units=10, activation='softmax'))

# Compile the model
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

# Generate some dummy data
x_train = np.random.rand(100, 28, 28, 1)
y_train = np.random.randint(0, 10, size=(100,))

# Convert the labels to one-hot encoding
y_train = keras.utils.to_categorical(y_train, num_classes=10)

# Train the model
model.fit(x_train, y_train, epochs=10, batch_size=32)

version = ""1.5.3""

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

featurelayers-1.5.3.tar.gz (8.6 kB view details)

Uploaded Source

Built Distribution

featurelayers-1.5.3-py3-none-any.whl (12.4 kB view details)

Uploaded Python 3

File details

Details for the file featurelayers-1.5.3.tar.gz.

File metadata

  • Download URL: featurelayers-1.5.3.tar.gz
  • Upload date:
  • Size: 8.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for featurelayers-1.5.3.tar.gz
Algorithm Hash digest
SHA256 705459a90e9c28f0b934e020f05fa7a3f50eef413c5248274b1413e7aca2971d
MD5 8ef6cabca09678152e5fdcf42fb00979
BLAKE2b-256 cb0fb1fc1c1918a0a5056272aa23bf2653c02361ada08e8865489e96a9b5af1f

See more details on using hashes here.

File details

Details for the file featurelayers-1.5.3-py3-none-any.whl.

File metadata

File hashes

Hashes for featurelayers-1.5.3-py3-none-any.whl
Algorithm Hash digest
SHA256 4c86d2e419555c8c65f12e0fd8e8bc89a6babf9726ec29b070f5609a2b9253a9
MD5 ec3dd6269ccfc8e69a1b1d34fbe727b9
BLAKE2b-256 c0a8aeac16872759a73409c59a6640a50cc43041fbbbf94dadd258c54aad3fa0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page