FeatureLayers Package
Project description
FeatureLayers
Installation
pip install featurelayers
Usage
LBC Layers
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Flatten
from featurelayers.layers.LBC import LBC
# Create a simple Keras model
model = Sequential()
# Add the LBC layer as the first layer in the model
model.add(LBC(filters=32, kernel_size=3, stride=1, padding='same', activation='relu', sparsity=0.9, name='lbc_layer'))
# Add a Flatten layer to convert the output to 1D
model.add(Flatten())
# Add a Dense layer for classification
model.add(Dense(units=10, activation='softmax'))
# Compile the model
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
# Generate some dummy data
x_train = np.random.rand(100, 28, 28, 1)
y_train = np.random.randint(0, 10, size=(100,))
# Convert the labels to one-hot encoding
y_train = keras.utils.to_categorical(y_train, num_classes=10)
# Train the model
model.fit(x_train, y_train, epochs=10, batch_size=32)
version = ""1.5.3""
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
featurelayers-1.5.3.tar.gz
(8.6 kB
view details)
Built Distribution
File details
Details for the file featurelayers-1.5.3.tar.gz
.
File metadata
- Download URL: featurelayers-1.5.3.tar.gz
- Upload date:
- Size: 8.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 705459a90e9c28f0b934e020f05fa7a3f50eef413c5248274b1413e7aca2971d |
|
MD5 | 8ef6cabca09678152e5fdcf42fb00979 |
|
BLAKE2b-256 | cb0fb1fc1c1918a0a5056272aa23bf2653c02361ada08e8865489e96a9b5af1f |
File details
Details for the file featurelayers-1.5.3-py3-none-any.whl
.
File metadata
- Download URL: featurelayers-1.5.3-py3-none-any.whl
- Upload date:
- Size: 12.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4c86d2e419555c8c65f12e0fd8e8bc89a6babf9726ec29b070f5609a2b9253a9 |
|
MD5 | ec3dd6269ccfc8e69a1b1d34fbe727b9 |
|
BLAKE2b-256 | c0a8aeac16872759a73409c59a6640a50cc43041fbbbf94dadd258c54aad3fa0 |