Skip to main content

FeatureLayers Package

Project description

FeatureLayers

Installation

pip install featurelayers

Usage

LBC Layers

import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Flatten
from featurelayers.layers.LBC import LBC

# Create a simple Keras model
model = Sequential()
# Add the LBC layer as the first layer in the model
model.add(LBC(filters=32, kernel_size=3, stride=1, padding='same', activation='relu', sparsity=0.9, name='lbc_layer'))
# Add a Flatten layer to convert the output to 1D
model.add(Flatten())
# Add a Dense layer for classification
model.add(Dense(units=10, activation='softmax'))

# Compile the model
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

# Generate some dummy data
x_train = np.random.rand(100, 28, 28, 1)
y_train = np.random.randint(0, 10, size=(100,))

# Convert the labels to one-hot encoding
y_train = keras.utils.to_categorical(y_train, num_classes=10)

# Train the model
model.fit(x_train, y_train, epochs=10, batch_size=32)

version = ""1.5.6""

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

featurelayers-1.5.6.tar.gz (8.6 kB view details)

Uploaded Source

Built Distribution

featurelayers-1.5.6-py3-none-any.whl (12.4 kB view details)

Uploaded Python 3

File details

Details for the file featurelayers-1.5.6.tar.gz.

File metadata

  • Download URL: featurelayers-1.5.6.tar.gz
  • Upload date:
  • Size: 8.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for featurelayers-1.5.6.tar.gz
Algorithm Hash digest
SHA256 7f0505c06eeb8b8dfaba3c535add6f451cf7e298425cdbaadad1a291b9ef484b
MD5 5cad607d9662696618a5aa63a73acb4a
BLAKE2b-256 f1babf4e0f1cf2b84ac1d20a8445c85b0c544732e973aef29eace465bf2a4062

See more details on using hashes here.

File details

Details for the file featurelayers-1.5.6-py3-none-any.whl.

File metadata

File hashes

Hashes for featurelayers-1.5.6-py3-none-any.whl
Algorithm Hash digest
SHA256 f7d59cfb02a11e7477b063e1971a33a0dfabef8e16da9ad84d9f7bcc4f011036
MD5 7b5bddf441e9b67592c2333909f543ad
BLAKE2b-256 04d336ea7f9813b3d121497d2a1ef5de008e4c91601ce3302f4c6a6d68744e39

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page