Skip to main content

FeatureMAP

Project description

FeatureMAP Illustration

FeatureMAP: Feature-preserving Manifold Approximation and Projection

Visualizing single-cell data is crucial for understanding cellular heterogeneity and dynamics. Traditional methods like UMAP and t-SNE are effective for clustering but often miss critical gene information. FeatureMAP innovatively combines UMAP and PCA concepts to preserve both clustering structures and gene feature variations within a low-dimensional space.

Description

FeatureMAP introduces a novel approach by enhancing manifold learning with pairwise tangent space embedding, aiming to retain crucial aspects of cellular data. We introduce two visualization plots by FeatureMAP: expression (GEX) and variation (GVA) embedding. Here is an example over one synthetic dataset (BEELINE) with a bifurcation model. Compared with UMAP, FeatureMAP-GEX better preserves density, and FeatureMAP-GVA shows trajectories. Bifurcation Embedding

Besides the two-dimensional visualization, FeatureMAP presents three core concepts:

  1. Gene Contribution: Estimating and projecting gene feature loadings. The arrow represents the direction and magnitude of one gene's change. Gene Contribution

  2. Gene Variation Trajectory: Tracking the cell differentiation across states. There are clear paths (transition states) connecting cell states (core states) in a knot-and-thread way. Gene Variation Trajectory View 3D Plot

  3. Core and Transition States: Defined computationally through cell density and cell variation properties. Core states are cells with higher cell density and smaller cell variation, while transition states are lower cell density and larger cell variation. Core and Transition States

These enhancements allow for differential gene variation (DGV) analysis, highlighting key regulatory genes that drive transitions between cellular states. Tested on both synthetic and real single-cell RNA sequencing (scRNA-seq) data, including studies on pancreatic development and T-cell exhaustion (Tutorials in ??), FeatureMAP provides a more detailed understanding of cellular trajectories and regulatory mechanisms.

Getting Started

Dependencies

  • Python 3.8 or higher
  • Required Python libraries: numpy, scipy, matplotlib, umap-learn, scikit-learn
  • Operating System: Any (Windows, macOS, Linux)

Installation

1. Install directly using pip:

pip install featuremap-learn

2. Installation via Conda

For users who prefer using Conda, especially for managing complex dependencies and environments in scientific computing.

conda install ???

How to use FeatureMAP

Data Visualization

For data visualization, FeatureMAP introduces expression embedding and variation embedding. Here is one example by MNIST datasets.

import featuremap
from sklearn.datasets import fetch_openml
from sklearn.utils import resample

digits = fetch_openml(name='mnist_784')
subsample, subsample_labels = resample(digits.data, digits.target, n_samples=7000, stratify=digits.target, random_state=1)

x_emb = featuremap.featureMAP().fit_transform(subsample)
v_emb = featuremap.featureMAP(output_variation=True).fit_transform(subsample)

Parameters:

output_variation: bool (False by default). Decide to generate expression embedding or variation embedding.

Outputs

x_emb: expession embedding to show the clustering

v_emb: variation embedding to show the trajectory

Documentation

More tutorials are at https://featuremap.readthedocs.io/en/latest/index.html.

Citation

Our FeatureMAP alogrithm is based on the paper

Yang, Yang, et al. "Interpretable Dimensionality Reduction by Feature Preserving Manifold Approximation and Projection." arXiv preprint arXiv:2211.09321 (2022).

License

The FeatureMAP package is under BSD-3-Clause license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

featuremap-learn-0.2.3.tar.gz (49.1 kB view details)

Uploaded Source

Built Distribution

featuremap_learn-0.2.3-py3-none-any.whl (48.8 kB view details)

Uploaded Python 3

File details

Details for the file featuremap-learn-0.2.3.tar.gz.

File metadata

  • Download URL: featuremap-learn-0.2.3.tar.gz
  • Upload date:
  • Size: 49.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for featuremap-learn-0.2.3.tar.gz
Algorithm Hash digest
SHA256 cdc261e22e3ee2d0461e4f73f34697931d7561cc84dd2a7a0eaa3637ad2e199b
MD5 8cd9f9f303f4483d0a4ef84cf58a5884
BLAKE2b-256 733893ad6cca5dd561c65e1ec7d692c123e2fc1084dec7531a30c10062a68cd0

See more details on using hashes here.

File details

Details for the file featuremap_learn-0.2.3-py3-none-any.whl.

File metadata

File hashes

Hashes for featuremap_learn-0.2.3-py3-none-any.whl
Algorithm Hash digest
SHA256 ac31c3d8aac4d99474a6fcef161e5260b66d36b56eebbc45dd9f0422bee0d039
MD5 0cf0c6f8f543871f364a012e7c738150
BLAKE2b-256 a5ffc611f7d789a5d4b09d955a80b9004e490c9d6fd767da1ce1bbd461862d32

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page