Skip to main content

TSFresh primitives for featuretools

Project description

TSFresh Primitives

Tests PyPI Version PyPI Downloads


Installation

Install with pip:

python -m pip install "featuretools[tsfresh]"

Calculating Features

In tsfresh, this is how you can calculate a feature.

from tsfresh.feature_extraction.feature_calculators import agg_autocorrelation

data = list(range(10))
param = [{'f_agg': 'mean', 'maxlag': 5}]
agg_autocorrelation(data, param=param)
[('f_agg_"mean"__maxlag_5', 0.1717171717171717)]

With tsfresh primtives in featuretools, this is how you can calculate the same feature.

from featuretools.tsfresh import AggAutocorrelation

data = list(range(10))
AggAutocorrelation(f_agg='mean', maxlag=5)(data)
0.1717171717171717

Combining Primitives

In featuretools, this is how to combine tsfresh primitives with built-in or other installed primitives.

import featuretools as ft
from featuretools.tsfresh import AggAutocorrelation, Mean

entityset = ft.demo.load_mock_customer(return_entityset=True)
agg_primitives = [Mean, AggAutocorrelation(f_agg='mean', maxlag=5)]
feature_matrix, features = ft.dfs(entityset=entityset, target_dataframe_name='sessions', agg_primitives=agg_primitives)

feature_matrix[[
    'MEAN(transactions.amount)',
    'AGG_AUTOCORRELATION(transactions.amount, f_agg=mean, maxlag=5)',
]].head()
            MEAN(transactions.amount)  AGG_AUTOCORRELATION(transactions.amount, f_agg=mean, maxlag=5)
session_id
1                           76.813125                                           0.044268
2                           74.696000                                          -0.053110
3                           88.600000                                           0.007520
4                           64.557200                                          -0.034542
5                           70.638182                                          -0.100571

Notice that tsfresh primtives are applied across relationships in an entityset generating many features that are otherwise not possible.

feature_matrix[['customers.AGG_AUTOCORRELATION(transactions.amount, f_agg=mean, maxlag=5)']].head()
            customers.AGG_AUTOCORRELATION(transactions.amount, f_agg=mean, maxlag=5)
session_id
1                                                    0.011102
2                                                   -0.001686
3                                                   -0.010679
4                                                    0.011204
5                                                   -0.010679

Built at Alteryx Innovation Labs

Alteryx Innovation Labs

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

featuretools_tsfresh_primitives-1.0.2.tar.gz (20.2 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file featuretools_tsfresh_primitives-1.0.2.tar.gz.

File metadata

  • Download URL: featuretools_tsfresh_primitives-1.0.2.tar.gz
  • Upload date:
  • Size: 20.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.12

File hashes

Hashes for featuretools_tsfresh_primitives-1.0.2.tar.gz
Algorithm Hash digest
SHA256 1ded5b013e314263fee37bc26da42b4b3a54516fbec6e962e5147b6c72f88e35
MD5 f659ae11749e184fec62ba97b2d5c6c7
BLAKE2b-256 8e549489bcfb8390a99e89c83fc8663966ae28a5d934d9e25868cb2fccdd9c35

See more details on using hashes here.

File details

Details for the file featuretools_tsfresh_primitives-1.0.2-py3-none-any.whl.

File metadata

  • Download URL: featuretools_tsfresh_primitives-1.0.2-py3-none-any.whl
  • Upload date:
  • Size: 57.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.12

File hashes

Hashes for featuretools_tsfresh_primitives-1.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 66560c161ab337a27908a07252f8d6566255cc3c86b3a52393649f513fd08dfd
MD5 f3a5386aa430c6e125204a130fc31f79
BLAKE2b-256 b37059525168319b3b78c5e66818b280310d8ff1027016ced27f28e38c14703f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page