Skip to main content

TSFresh primitives for featuretools

Project description

Featuretools TSFresh Primitives

Installation

pip install 'featuretools[tsfresh]'

Calculating Features

In tsfresh, this is how to calculate a feature.

from tsfresh.feature_extraction.feature_calculators import agg_autocorrelation

data = list(range(10))
param = [{'f_agg': 'mean', 'maxlag': 5}]
agg_autocorrelation(data, param=param)
[('f_agg_"mean"__maxlag_5', 0.1717171717171717)]

With tsfresh primtives in featuretools, this is how to calculate the same feature.

from featuretools.tsfresh import AggAutocorrelation

data = list(range(10))
AggAutocorrelation(f_agg='mean', maxlag=5)(data)
0.1717171717171717

Combining Primitives

In featuretools, this is how to combine tsfresh primitives with built-in or other installed primitives.

import featuretools as ft
from featuretools.tsfresh import AggAutocorrelation, Mean

entityset = ft.demo.load_mock_customer(return_entityset=True)
agg_primitives = [Mean, AggAutocorrelation(f_agg='mean', maxlag=5)]
feature_matrix, features = ft.dfs(entityset=entityset, target_entity='sessions', agg_primitives=agg_primitives)

feature_matrix[[
    'MEAN(transactions.amount)',
    'AGG_AUTOCORRELATION(transactions.amount, f_agg=mean, maxlag=5)',
]].head()
            MEAN(transactions.amount)  AGG_AUTOCORRELATION(transactions.amount, f_agg=mean, maxlag=5)
session_id
1                           76.813125                                           0.044268
2                           74.696000                                          -0.053110
3                           88.600000                                           0.007520
4                           64.557200                                          -0.034542
5                           70.638182                                          -0.100571

Notice that tsfresh primtives are applied across relationships in an entityset generating many features that are otherwise not possible.

feature_matrix[['customers.AGG_AUTOCORRELATION(transactions.amount, f_agg=mean, maxlag=5)']].head()
            customers.AGG_AUTOCORRELATION(transactions.amount, f_agg=mean, maxlag=5)
session_id
1                                                    0.011102
2                                                   -0.001686
3                                                   -0.010679
4                                                    0.011204
5                                                   -0.010679

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

featuretools_tsfresh_primitives-0.1.1.tar.gz (17.5 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file featuretools_tsfresh_primitives-0.1.1.tar.gz.

File metadata

  • Download URL: featuretools_tsfresh_primitives-0.1.1.tar.gz
  • Upload date:
  • Size: 17.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.3

File hashes

Hashes for featuretools_tsfresh_primitives-0.1.1.tar.gz
Algorithm Hash digest
SHA256 e42af4068963ea9bfa8b3b61dcf0151853e77aaa6a235a2c949f5b0ecc8ce689
MD5 2ddda70af6f77a4fb79fb9565ff8ace3
BLAKE2b-256 707acc655cc46194336b05c4ef1bde9816791a2e2638d5d55fab964424ca8776

See more details on using hashes here.

File details

Details for the file featuretools_tsfresh_primitives-0.1.1-py3-none-any.whl.

File metadata

  • Download URL: featuretools_tsfresh_primitives-0.1.1-py3-none-any.whl
  • Upload date:
  • Size: 48.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.3

File hashes

Hashes for featuretools_tsfresh_primitives-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 65357dfcaffbdef753045c31bc90e2d155e55070e8a57cf7c059b770f4533ef6
MD5 f1528511ba03a9b8465bf83bea32db5d
BLAKE2b-256 0a4942b79c1dbca892fb42df76fb6417ab3ea31a8fa7453f2ffdf3b5222fb410

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page