Skip to main content

TSFresh primitives for featuretools

Project description

Featuretools TSFresh Primitives

Installation

pip install 'featuretools[tsfresh]'

Calculating Features

In tsfresh, this is how to calculate a feature.

from tsfresh.feature_extraction.feature_calculators import agg_autocorrelation

data = list(range(10))
param = [{'f_agg': 'mean', 'maxlag': 5}]
agg_autocorrelation(data, param=param)
[('f_agg_"mean"__maxlag_5', 0.1717171717171717)]

With tsfresh primtives in featuretools, this is how to calculate the same feature.

from featuretools.tsfresh import AggAutocorrelation

data = list(range(10))
AggAutocorrelation(f_agg='mean', maxlag=5)(data)
0.1717171717171717

Combining Primitives

In featuretools, this is how to combine tsfresh primitives with built-in or other installed primitives.

import featuretools as ft
from featuretools.tsfresh import AggAutocorrelation, Mean

entityset = ft.demo.load_mock_customer(return_entityset=True)
agg_primitives = [Mean, AggAutocorrelation(f_agg='mean', maxlag=5)]
feature_matrix, features = ft.dfs(entityset=entityset, target_entity='sessions', agg_primitives=agg_primitives)

feature_matrix[[
    'MEAN(transactions.amount)',
    'AGG_AUTOCORRELATION(transactions.amount, f_agg=mean, maxlag=5)',
]].head()
            MEAN(transactions.amount)  AGG_AUTOCORRELATION(transactions.amount, f_agg=mean, maxlag=5)
session_id
1                           76.813125                                           0.044268
2                           74.696000                                          -0.053110
3                           88.600000                                           0.007520
4                           64.557200                                          -0.034542
5                           70.638182                                          -0.100571

Notice that tsfresh primtives are applied across relationships in an entityset generating many features that are otherwise not possible.

feature_matrix[['customers.AGG_AUTOCORRELATION(transactions.amount, f_agg=mean, maxlag=5)']].head()
            customers.AGG_AUTOCORRELATION(transactions.amount, f_agg=mean, maxlag=5)
session_id
1                                                    0.011102
2                                                   -0.001686
3                                                   -0.010679
4                                                    0.011204
5                                                   -0.010679

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

featuretools_tsfresh_primitives-0.1.2.tar.gz (17.5 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file featuretools_tsfresh_primitives-0.1.2.tar.gz.

File metadata

  • Download URL: featuretools_tsfresh_primitives-0.1.2.tar.gz
  • Upload date:
  • Size: 17.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.37.0 CPython/3.7.3

File hashes

Hashes for featuretools_tsfresh_primitives-0.1.2.tar.gz
Algorithm Hash digest
SHA256 c9251fd733b4f600e9f369eeece93cb6331ed948551ab703762c048aff863dff
MD5 f2444146b77b9912c14644b71266011a
BLAKE2b-256 84a57e69730eb804db611b170b3d5f49e1bcb181c60243f80e0cd08154e4ba87

See more details on using hashes here.

File details

Details for the file featuretools_tsfresh_primitives-0.1.2-py3-none-any.whl.

File metadata

  • Download URL: featuretools_tsfresh_primitives-0.1.2-py3-none-any.whl
  • Upload date:
  • Size: 48.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.37.0 CPython/3.7.3

File hashes

Hashes for featuretools_tsfresh_primitives-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 d8d5238d91ccd2063721e8b3bcec59b7a68d4c5f4955323810020207a604a47b
MD5 a2651a345eb184654ee5bdac3abfb086
BLAKE2b-256 7c3e49f9decab66c62b397c02f4b3b435efaeb660781c3f3e585a304f02c337f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page