TSFresh primitives for featuretools
Project description
Featuretools TSFresh Primitives
Installation
pip install 'featuretools[tsfresh]'
Calculating Features
In tsfresh
, this is how to calculate a feature.
from tsfresh.feature_extraction.feature_calculators import agg_autocorrelation
data = list(range(10))
param = [{'f_agg': 'mean', 'maxlag': 5}]
agg_autocorrelation(data, param=param)
[('f_agg_"mean"__maxlag_5', 0.1717171717171717)]
With tsfresh primtives in featuretools
, this is how to calculate the same feature.
from featuretools.tsfresh import AggAutocorrelation
data = list(range(10))
AggAutocorrelation(f_agg='mean', maxlag=5)(data)
0.1717171717171717
Combining Primitives
In featuretools
, this is how to combine tsfresh primitives with built-in or other installed primitives.
import featuretools as ft
from featuretools.tsfresh import AggAutocorrelation, Mean
entityset = ft.demo.load_mock_customer(return_entityset=True)
agg_primitives = [Mean, AggAutocorrelation(f_agg='mean', maxlag=5)]
feature_matrix, features = ft.dfs(entityset=entityset, target_entity='sessions', agg_primitives=agg_primitives)
feature_matrix[[
'MEAN(transactions.amount)',
'AGG_AUTOCORRELATION(transactions.amount, f_agg=mean, maxlag=5)',
]].head()
MEAN(transactions.amount) AGG_AUTOCORRELATION(transactions.amount, f_agg=mean, maxlag=5)
session_id
1 76.813125 0.044268
2 74.696000 -0.053110
3 88.600000 0.007520
4 64.557200 -0.034542
5 70.638182 -0.100571
Notice that tsfresh primtives are applied across relationships in an entityset generating many features that are otherwise not possible.
feature_matrix[['customers.AGG_AUTOCORRELATION(transactions.amount, f_agg=mean, maxlag=5)']].head()
customers.AGG_AUTOCORRELATION(transactions.amount, f_agg=mean, maxlag=5)
session_id
1 0.011102
2 -0.001686
3 -0.010679
4 0.011204
5 -0.010679
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file featuretools_tsfresh_primitives-0.1.2.tar.gz
.
File metadata
- Download URL: featuretools_tsfresh_primitives-0.1.2.tar.gz
- Upload date:
- Size: 17.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.37.0 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c9251fd733b4f600e9f369eeece93cb6331ed948551ab703762c048aff863dff |
|
MD5 | f2444146b77b9912c14644b71266011a |
|
BLAKE2b-256 | 84a57e69730eb804db611b170b3d5f49e1bcb181c60243f80e0cd08154e4ba87 |
File details
Details for the file featuretools_tsfresh_primitives-0.1.2-py3-none-any.whl
.
File metadata
- Download URL: featuretools_tsfresh_primitives-0.1.2-py3-none-any.whl
- Upload date:
- Size: 48.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.37.0 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d8d5238d91ccd2063721e8b3bcec59b7a68d4c5f4955323810020207a604a47b |
|
MD5 | a2651a345eb184654ee5bdac3abfb086 |
|
BLAKE2b-256 | 7c3e49f9decab66c62b397c02f4b3b435efaeb660781c3f3e585a304f02c337f |