Skip to main content

TSFresh primitives for featuretools

Project description

Featuretools TSFresh Primitives

Installation

pip install 'featuretools[tsfresh]'

Calculating Features

In tsfresh, this is how to calculate a feature.

from tsfresh.feature_extraction.feature_calculators import agg_autocorrelation

data = list(range(10))
param = [{'f_agg': 'mean', 'maxlag': 5}]
agg_autocorrelation(data, param=param)
[('f_agg_"mean"__maxlag_5', 0.1717171717171717)]

With tsfresh primtives in featuretools, this is how to calculate the same feature.

from featuretools.tsfresh import AggAutocorrelation

data = list(range(10))
AggAutocorrelation(f_agg='mean', maxlag=5)(data)
0.1717171717171717

Combining Primitives

In featuretools, this is how to combine tsfresh primitives with built-in or other installed primitives.

import featuretools as ft
from featuretools.tsfresh import AggAutocorrelation, Mean

entityset = ft.demo.load_mock_customer(return_entityset=True)
agg_primitives = [Mean, AggAutocorrelation(f_agg='mean', maxlag=5)]
feature_matrix, features = ft.dfs(entityset=entityset, target_entity='sessions', agg_primitives=agg_primitives)

feature_matrix[[
    'MEAN(transactions.amount)',
    'AGG_AUTOCORRELATION(transactions.amount, f_agg=mean, maxlag=5)',
]].head()
            MEAN(transactions.amount)  AGG_AUTOCORRELATION(transactions.amount, f_agg=mean, maxlag=5)
session_id
1                           76.813125                                           0.044268
2                           74.696000                                          -0.053110
3                           88.600000                                           0.007520
4                           64.557200                                          -0.034542
5                           70.638182                                          -0.100571

Notice that tsfresh primtives are applied across relationships in an entityset generating many features that are otherwise not possible.

feature_matrix[['customers.AGG_AUTOCORRELATION(transactions.amount, f_agg=mean, maxlag=5)']].head()
            customers.AGG_AUTOCORRELATION(transactions.amount, f_agg=mean, maxlag=5)
session_id
1                                                    0.011102
2                                                   -0.001686
3                                                   -0.010679
4                                                    0.011204
5                                                   -0.010679

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

featuretools_tsfresh_primitives-0.1.3.tar.gz (17.6 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file featuretools_tsfresh_primitives-0.1.3.tar.gz.

File metadata

  • Download URL: featuretools_tsfresh_primitives-0.1.3.tar.gz
  • Upload date:
  • Size: 17.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.37.0 CPython/3.7.3

File hashes

Hashes for featuretools_tsfresh_primitives-0.1.3.tar.gz
Algorithm Hash digest
SHA256 7ddfc7eaf12e4b3e72fb66a2df9fdf76313db5f22337708e1697747df9d41a20
MD5 5d63b2c186542b8102667e644dbaecb8
BLAKE2b-256 7dbe79a955050ff385fa11ff9de5288f4704d76b367a6bcf2357ee39f2670d3a

See more details on using hashes here.

File details

Details for the file featuretools_tsfresh_primitives-0.1.3-py3-none-any.whl.

File metadata

  • Download URL: featuretools_tsfresh_primitives-0.1.3-py3-none-any.whl
  • Upload date:
  • Size: 48.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.37.0 CPython/3.7.3

File hashes

Hashes for featuretools_tsfresh_primitives-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 618d68278c8c25a3b9c02149fdd95ac52339c67519428381f3e19b2ca44ffb90
MD5 b8056d34875ceee67a4f7e90792a3420
BLAKE2b-256 779c7f8aa77f8c8a2b4c0db6a62c427bec6ea5d070ddbe3e7ed5010f597eb6d3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page