Skip to main content

a python parser for the .fec file format

Project description

This is a library for converting campaign finance filings stored in the .fec format into native python objects. It maps the comma/ASCII 28 delimited fields to canonical names based on the version the filing uses and then converts the values that are dates and numbers into the appropriate int, float, or datetime objects.

This library is in relatively early testing. I've used it on a couple of projects, but I wouldn't trust it to work on all filings. That said, if you do try using it, I'd love to hear about it!

Why?

The FEC makes a ton of data available via the "export" links on the main site and the developer API. For cases where those data sources are sufficient, they are almost certainly the easiest/best way to go. A few cases where one might need to be digging into raw filings are:

  • Getting information from individual itemizations including addresses

  • Getting data as soon as it has been filed, instead of waiting for it to be coded. (The FEC generally codes all filings received by 7pm eastern by 7am the next day. However, that means that a filing received at 11:59pm on Monday wouldn't be available until 7am on Wednesday, for example.)

  • Getting more data than the rate-limit on the developer API would allow

  • Maintaining ones own database with all relevant campaign finance data, perhaps synced with another data source

Raw filings can be found by either downloading the bulk data zip files or from http requests like this. This library includes helper methods for both.

Installation

To get started, install from pypi by running the following command in your preferred terminal:


pip install fecfile

Usage

For the vast majority of filings, the easiest way to use this library will be to load filings all at once by using the from_http(file_number), from_file(file_path), or loads(input) methods.

These methods will return a Python dictionary, with keys for header, filing, itemizations, and text. The itemizations dictionary contains lists of itemizations grouped by type (Schedule A, Schedule B, etc.).

Examples:


import fecfile

import json



filing1 = fecfile.from_file('1229017.fec')

print(json.dumps(filing1, sort_keys=True, indent=2, default=str))



filing2 = fecfile.from_http(1146148)

print(json.dumps(filing2, sort_keys=True, indent=2, default=str))



with open('1229017.fec') as file:

    parsed = fecfile.loads(file.read())

    print(json.dumps(parsed, sort_keys=True, indent=2, default=str))



url = 'http://docquery.fec.gov/dcdev/posted/1229017.fec'

r = requests.get(url, headers={'User-Agent': 'Mozilla/5.0'})

parsed = fecfile.loads(r.text)

print(json.dumps(parsed, sort_keys=True, indent=2, default=str))

Note #1: the default=str parameter allows serializing to json for dictionaries like the ones returned by the fecfile library that contain datetime objects.

Note #2: the docquery.fec.gov urls cause problems with the requests library when a user-agent is not supplied. There may be a cleaner fix to that though.

Advanced Usage

For some large filings, loading the entire filing into memory like the above examples do would not be a good idea. For those cases, the fecfile library provides methods for parsing filings one line at a time.


import fecfile



version = None



with open('1263179.fec') as file:

    for line in file:

        if version is None:

            header, version = fecfile.parse_header(line)

        else:

            parsed = fecfile.parse_line(line, version)

            save_to_db(parsed)

API Reference

loads


loads(input)

Deserialize input (a str instance

containing an FEC document) to a Python object.

parse_header


parse_header(hdr)

Deserialize a str or a list of str instances containing

header information for an FEC document. Returns an Python object, the

version str used in the document, and the number of lines used

by the header.

The third return value of number of lines used by the header is only

useful for versions 1 and 2 of the FEC file format, when the header

was a multiline string beginning and ending with /*. This allows

us to pass in the entire contents of the file as a list of lines and

know where to start parsing the non-header lines.

parse_line


parse_line(line, version, line_num=None)

Deserialize a line (a str instance

containing a line from an FEC document) to a Python object.

version is a str instance for the version of the FEC file format

to be used, and is required.

line_num is optional and is used for debugging. If an error or

warning is encountered, whatever is passed in to line_num will be

included in the error/warning message.

from_http


from_http(file_number)

Utility method for getting a parsed Python representation of an FEC

filing when you don't already have it on your computer. This method takes

either a str or int as a file_number and requests it from

the docquery.fec.gov server, then parses the response.

from_file


from_file(file_path)

Utility method for getting a parsed Python representation of an FEC

filing when you have the .fec file on your computer. This method takes

a str of the path to the file, and returns the parsed Python object.

print_example


print_example(parsed)

Utility method for debugging - prints out a representative subset of

the Python object returned by one of the deserialization methods. For

filings with itemizations, it only prints the first of each type of

itemization included in the object.

Developing locally

Assuming you already have Python3 and the ability to create virtual environments installed, first clone this repository from github and cd into it:


git clone https://github.com/esonderegger/fecfile.git

cd fecfile

Then create a virtual environment for this project (I use the following commands, but there are several ways to get the desired result):


python3 -m venv ~/.virtualenvs/fecfile

source ~/.virtualenvs/fecfile/bin/activate

Next, install the dependencies:


python setup.py

Finally, make some changes, and run:


python tests.py

Thanks

This project would be impossible without the work done by the kind folks at The New York Times Newsdev team. In particular, this project relies heavily on fech although it actually uses a transformation of this fork.

Contributing

I would love some help with this, particularly with the mapping from strings to int, float, and datetime types. Please create an issue or make a pull request. Or reach out privately via email - that works too.

To do:

Almost too much to list:

  • Handle files from before v6 when they were comma-delimited

  • create a dumps method for writing .fec files for round-trip tests

  • add more types to the types.json file

  • elegantly handle errors

Changes

0.4.7 (November 2, 2018)

  • add types for F4, SF, and SL

  • fix issue causing incorrect mapping for F9

0.4.6 (October 29, 2018)

  • add mappings for paper versions of F4

  • add mappings for paper versions of F56

  • add mappings for paper versions of F91

  • add mappings for paper versions of F92

  • add mappings for paper versions of F93

  • add mappings for paper versions of F94

  • add mappings for paper versions of F99

  • add mappings for paper versions of H5 and H6

  • add mappings for paper versions of Schedule L

  • add mapping for version P3.4 for F3Z1 and F3Z2

0.4.5 (October 27, 2018)

  • add mappings for paper versions of F3Z

0.4.4 (October 17, 2018)

  • fixed out of order mappings for paper versions of F3

0.4.3 (October 10, 2018)

  • add mappings for paper versions of F76

  • add mappings for paper versions of F9

  • add mappings for paper versions of F2

  • add mappings for paper versions of F7

0.4.2 (October 9, 2018)

  • add mappings for paper versions of F57

  • add mappings for paper versions of F5

  • add mappings for paper versions of F3L

  • add mappings for paper versions of F3S

0.4.1 (October 4, 2018)

  • add mappings for versions P1 and P2 of Schedule B

  • add mappings for versions P1 and P2 of Schedule A

  • add mappings for versions P1 and P2 of F3

  • add F99_text field to returned object for form 99 filings

  • add hdr mappings for paper versions 1 and 2

  • do not split on commas when we know the form is using ascii 28

  • add mappings for paper versions of F65

  • add mappings for paper versions of schedule C1

  • add mappings for paper versions of schedule C2

  • add mappings for paper versions of schedule E

0.4.0 (October 2, 2018)

  • Updated documentation

  • add paper versions for schedule F

0.3.9 (October 1, 2018)

  • add paper versions for H1, H2, H3, and H4

0.3.8 (September 28, 2018)

  • add paper versions for the F1S

0.3.7 (September 27, 2018)

  • add paper versions of F1M

  • add paper versions for F3X

  • add F3P paper filing mappings

0.3.6 (September 27, 2018)

  • add F6 paper mappings and fix missing commas

0.3.5 (September 26)

  • add all paper versions of form F1

0.3.4 (September 18, 2018)

  • expose parse_header and parse_line to consumers of this library

0.3.3 (September 18, 2018)

  • add version 8.3 to mappings

0.3.2 (August 29, 2018)

  • versions 1 and 2 of schedule H1 and H2

0.3.1 (August 29, 2018)

  • added more mappings

  • add a method to determine which mappings are missing

0.3.0 (August 27, 2018)

  • Rework warnings and errors for cases where mappings are missing

  • add mappings

0.2.3 (August 24, 2018)

  • fix for filings that use both quotes and the field separator

0.2.2 (August 23, 2018)

  • add support for F13, F132, and F133

0.2.1 (August 21, 2018)

  • Fix regression that broke paper filings

0.2.0 (August 2, 2018)

  • Add parsing for versions 1 and 2 of the .fec format

0.1.9 (July 18, 2018)

  • add parsing for senate paper filings

0.1.8 (June 26, 2018)

  • interest rate should never have been a float field

0.1.7 (June 26, 2018)

  • handle n/a in number fields

0.1.6 (June 25, 2018)

  • more types

  • update documentation

  • handle percent signs in interest rates

0.1.5 (June 21, 2018)

  • Initial published version

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fecfile-0.4.7.tar.gz (22.6 kB view details)

Uploaded Source

Built Distribution

fecfile-0.4.7-py3-none-any.whl (22.3 kB view details)

Uploaded Python 3

File details

Details for the file fecfile-0.4.7.tar.gz.

File metadata

  • Download URL: fecfile-0.4.7.tar.gz
  • Upload date:
  • Size: 22.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/39.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.4.5

File hashes

Hashes for fecfile-0.4.7.tar.gz
Algorithm Hash digest
SHA256 d58e6c75460103ef782230404ccfd912da1c3523cfb93f25ff85255c9ebbad5c
MD5 cac1fd8b7894cb38411514ae653f77e5
BLAKE2b-256 e4b3422aa0fd3809cec651b1da7a00f7d8e2c63185cac94f00aae0af9b8be056

See more details on using hashes here.

File details

Details for the file fecfile-0.4.7-py3-none-any.whl.

File metadata

  • Download URL: fecfile-0.4.7-py3-none-any.whl
  • Upload date:
  • Size: 22.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/39.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.4.5

File hashes

Hashes for fecfile-0.4.7-py3-none-any.whl
Algorithm Hash digest
SHA256 e0282ed13026682ba0c3c762adfc7f8a4f58862585c2ab65df77845dcc2f8161
MD5 f9c69457b2d05c775549f5cca7603401
BLAKE2b-256 321a0c881e0b8eaa2fa0b21118b244adeb37ebf9ba737154f15f21fd35bd54de

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page