Skip to main content

A research-oriented federal learning framework.

Project description

https://badge.fury.io/py/federatedcore.svg

FederatedCore

A research-oriented federal learning framework.

Features

  1. Compatibility. FederatedCore can work seamlessly with mainstream deep learning frameworks, e.g., PyTorch and Tensorflow.

  2. Modular. The code of the algorithm module can be used individually.

  3. Easy to use. Retrofit existing code to data parallelism with no more than 100 lines code.

Support

Attributes

Value

Framework

Pytorch, Tensorflow

Engine

parallelism, sequence

Dataset

label distribution, quality distribution

Topology

parameter server, gossip, all reduce

Communication

queue, TCP

QuickStart

Install m3u8_To_MP4 via pip

# via pypi.org
python -m pip install federatedcore

# first clone project, and install.
git clone https://github.com/songs18/FederatedCore.git
python -m pip install ./FederatedCore

A small example (FedAvg)

Implement FedAvg in fewer than 100 lines.

(/examples/FedAvg/federated_average.py)

def run(num_nodes, has_server):
    def build_host_ids():
        if has_server:
            return [i for i in range(num_nodes + 1)]
        else:
            return [i for i in range(num_nodes)]

    def build_func_libs():
        func_libs = {
            'train_dataset'   : 'self_contained_dnn',  # load_train_dataset,
            'test_dataset'    : 'self_contained_dnn',  # load_test_dataset,
            'model'           : 'self_contained_dnn',  # get_model,
            'loss'            : 'self_contained_dnn',  # get_loss,
            'optimizer'       : 'self_contained_dnn',  # get_optimizer,
            'metric_loss'     : 'self_contained_dnn',  # get_metric_loss,
            'metric_acc'      : 'self_contained_dnn',  # get_metric_acc,
            'train_step'      : 'self_contained_dnn',  # get_train_step,
            'test_step'       : 'self_contained_dnn',  # get_test_step,
            'aggregation_func': average_parameters,
        }
        return func_libs

    def build_linkers():
        node_inboxes = queuer.node_inbox(num_nodes + 1)

        linkers = list()
        for host_id in range(num_nodes):
            linker = queuer.LocalQueue(host_id, node_inboxes)
            linkers.append(linker)

        if has_server:
            linker = queuer.LocalQueue(num_nodes, node_inboxes)
            linkers.append(linker)

        return linkers

    def build_execution_plans():
        execution_plans = ExecutionPlanTemplate.client_train * 5
        execution_plans = [[[c, {}] for c in execution_plans] for _ in range(num_nodes)]

        if has_server:
            server_execution_plan = ExecutionPlanTemplate.server_init + ExecutionPlanTemplate.server_sync_train * 5
            server_execution_plan.pop(-1)
            server_execution_plan = [[s, {'iteration': 3}] for s in server_execution_plan]

            execution_plans.append(server_execution_plan)

        return execution_plans

    host_ids = build_host_ids()
    func_libs = build_func_libs()
    linkers = build_linkers()
    execution_plans = build_execution_plans()

    parallelism.run_parallel(host_ids, func_libs, linkers, execution_plans)


def main():
    num_nodes = 2
    generate_topology(num_nodes)
    split_dataset(num_nodes)
    build_host(num_nodes)
    run(num_nodes, True)


if __name__ == '__main__':
    main()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

federatedcore-0.0.2-py3-none-any.whl (40.6 kB view details)

Uploaded Python 3

File details

Details for the file federatedcore-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: federatedcore-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 40.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.3 readme-renderer/30.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.7 tqdm/4.62.3 importlib-metadata/4.8.1 keyring/23.2.1 rfc3986/1.5.0 colorama/0.4.4 CPython/3.6.7

File hashes

Hashes for federatedcore-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 0087fe5ec98261ead935fb0d1ea1f80fba009e2e6a0d1d96f7bcc274e6b3cf2e
MD5 b3e8c3696bfbdcf1b98af027eaf82f98
BLAKE2b-256 95e0fcb75e4568350bdd7e70639e2e1652a6e35de69d1ed46b4397ceb5921e51

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page