Generic Federated Learning Simulator with PyTorch
Project description
FedSim
FedSim is a comprehensive and flexible Federated Learning Simulator! It aims to provide the researchers with an easy to develope/maintain simulator for Federated Learning. See documentation at here!
Installation
pip install fedsim
That’s it! You are all set!
Design Architecture
CLI
Minimal example
Fedsim provides powerful cli tools that allow you to focus on designing what is truly important. Simply enter the following command to begin federatively training a model.
fedsim-cli fed-learn
The “MNIST” dataset is partitioned on 500 clients by default, and the FedAvg algorithm is used to train a minimal model with two fully connected layers. A text file is made that descibes the configuration for the experiment and a summary of results when it is finished. Additionally, a tensorboard log file is made to monitor the scores/metrics of the training. The directory that these files are stored is (reconfigurable and is) displayed while the experiment is running.
Hooking scores to cli tools
In case you are interested in a certain metric you can make a query for it in your command. For example, lets assume we would like to test and report: * the accuracy score of the global model on global test dataset both every 21 rounds and every 43 rounds. * the average accuracy score of the local models every 15 rounds. Here’s how we modify the above command:
fedsim-cli fed-learn \
--global-score Accuracy score_name:acc21 split:test log_freq:21 \
--global-score Accuracy score_name:acc43 split:test log_freq:43 \
--local-score Accuracy split:train log_freq:15
Check Fedsim Scores Page for the list of all other scores like Accyracy or define your custom score.
Changing the Data
Data partitioning and retrieval is controlled by a DataManager object. This object could be controlled through -d or –data-manager flag in most cli commands. In the following we modify the arguments of the default DataManager such that CIFAR100 is partitioned over 1000 clients.
fedsim-cli fed-learn \
--data-manger BasicDataManager dataset:cifar100 num_partitions:1000 \
--num-clients 1000 \
--model SimpleCNN2 num_classes:100 \
--global-score Accuracy split:test log_freq:15
Notice that we also changed the model from default to SimpleCNN2 which by default takes 3 input channels. You can learn about existing data managers at data manager documentation and Custom data managers at this guide to make Custom data managers.
Feed CLI with Customized Components
The cli tool can take a locally defined component by ingesting its path. For example, to automatically include your custom algorithm by the a command of the cli tool, you can place your class in a python file and pass the path of the file to -a or –algorithm option (without .py) followed by colon and name of the algorithm definition (class or method). For instance, if you have algorithm CustomFLAlgorithm stored in a foo/bar/my_custom_alg.py, you can pass –algorithm foo/bar/my_custom_alg:CustomFLAlgorithm.
fedsim-cli fed-learn --algorithm foo/bar/my_custom_alg_file:CustomFLAlgorithm mu:0.01 ...
The same is possible for any other component, for instance for a Custom model:
fedsim-cli fed-learn --model foo/bar/my_model_file:CustomModel num_classes:1000 ...
More about cli commands
For help with cli check fedsim-cli documentation or read the output of the following commands:
fedsim-cli --help
fedsim-cli fed-learn --help
fedsim-cli fed-tune --help
Python API
Fedsim is shipped with some of the most well-known Federated Learning algorithms included. However, you will most likely need to quickly develop and test your custom algorithm, model, data manager, or score class. Fedsim has been designed in such a way that doing all of these things takes almost no time and effort. Let’s start by learning how to import and use Fedsim, and then we’ll go over how to easily modify existing modules and classes to your liking. Check the following basic example:
from logall import TensorboardLogger
from fedsim.distributed.centralized.training import FedAvg
from fedsim.distributed.data_management import BasicDataManager
from fedsim.models import SimpleCNN2
from fedsim.losses import CrossEntropyLoss
from fedsim.scores import Accuracy
n_clients = 1000
dm = BasicDataManager("./data", "cifar100", n_clients)
sw = TensorboardLogger(path=None)
alg = FedAvg(
data_manager=dm,
num_clients=n_clients,
sample_scheme="uniform",
sample_rate=0.01,
model_def=partial(SimpleCNN2, num_channels=3),
epochs=5,
criterion_def=partial(CrossEntropyLoss, log_freq=100),
batch_size=32,
metric_logger=sw,
device="cuda",
)
alg.hook_local_score(
partial(Accuracy, log_freq=50),
split='train,
score_name="accuracy",
)
alg.hook_global_score(
partial(Accuracy, log_freq=40),
split='test,
score_name="accuracy",
)
report_summary = alg.train(rounds=50)
Side Notes
Do not use double underscores (__) in argument names of your customized classes.
0.9.0 (2022-09-21)
make all user methods in algorithms static (no self argument).
better encapsulation.
expand definition of storage for read and write protection.
0.8.3 (2022-09-18)
add option for valid split on global data in basic dta manager.
0.8.2 (2022-09-12)
changed image paths to links from github in readme
0.8.1 (2022-09-12)
fix a minor bug with a link in readme
0.8.0 (2022-09-12)
some major revision to documentation
some enhancement to FedProx compatibility with v0.7+
0.7.0 (2022-09-10)
algorithms got more secure with local storage
redefined model architectures
fixed bug in default step closure’
made random seed more consistent
0.6.2 (2022-08-31)
fixed some errors in docstring of central FL algorithms
add sample balance param to to identifiers of data manager
0.6.1 (2022-08-17)
fixed bug in partition_global_data of BasicDataManager
some changes in default values for better log storage and aggregation
0.6.0 (2022-08-16)
changed the name of cli directory
added cli tests
added support for pytorch original lr schedulers
improved docs
added version option to fedsim-cli
0.5.0 (2022-08-15)
completed lr schedulers and generalized them for all levels
changed some argument names and default values
0.4.1 (2022-08-12)
fixed bugs with mismatched loss_fn argument name in cli commands
changed all eval_freq arguemnts to unified log_req
0.4.0 (2022-08-12)
changed the structure of scores and losses
made it possible to hook multiple local and global scores
0.3.1 (2022-08-09)
added advanced learning rate schedulers
properly tested r2r lr scheduler
0.3.0 (2022-08-09)
added fine-tuning to cli, fed-tune
cleaner cli
made optimizers and schedulers user definable
improved logging
0.2.0 (2022-08-01)
cleaned the API reference in docs
changed cli name to fedsim-cli
improved documentation
improved importing
changed the way custom objects are passed to cli
0.1.4 (2022-07-23)
changed FLAlgorithm to CentralFLAlgorithm for more clearity
set default device to cuda if available otherwise to cpu in fed-learn cli
fix wrong superclass names in demo
fix the confusion with save_dir and save_path in DataManager classes
0.1.3 (2022-07-08)
the documentation is redesigned and mostly automated.
documentation now is available at https://fesim.varnio.com
added code of coduct from github tempalate
0.1.2 (2022-07-05)
changed ownership of repo from fedsim-dev to varnio
0.1.1 (2022-06-22)
added fedsim.scores which wraps torch loss functions and sklearn scores
moved reporting mechanism of distributed algorithm for supporting auto monitor
added AppendixAggregator which is used to hold metric scores and report final results
apply a patch for wrong pypi supported python versions
0.1.0 (2022-06-21)
First major pre-release.
The package is restructured
docs is updated and checked to pass through tox steps
0.0.4 (2022-06-14)
Fourth release on PyPI.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file fedsim-0.9.0.tar.gz
.
File metadata
- Download URL: fedsim-0.9.0.tar.gz
- Upload date:
- Size: 17.1 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 511f9431441f63eb877fbfbafee70d3e2be16d7a5d3ded3780fc82cbf0cbb622 |
|
MD5 | 6a2bd59e16763e31a4dcd8db10c8e51a |
|
BLAKE2b-256 | 9c35c161e10e568516f53aa3dd3e1886892f27c5adac4b57d0138c458d68b915 |
File details
Details for the file fedsim-0.9.0-py3-none-any.whl
.
File metadata
- Download URL: fedsim-0.9.0-py3-none-any.whl
- Upload date:
- Size: 89.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2ab230ca440f267c226b933bd9eb69f78011e79708edabe250a8055424be36a1 |
|
MD5 | 6341a4ca15d1cf5f1cb6425358b3914a |
|
BLAKE2b-256 | 648b3fe39c0b88bdf0b6937e9a4dddd77d9274c5ae6354510b057a1ce129a013 |