An open source library for the extraction of Federal Reserve Data.
Project description
FedTools
An open source Python library for the scraping of Federal Reserve data.
By default, all modules within FedTools use 10 threads to increase scraping speed. By default, the Output is a Pandas DataFrame, indexed by release date of the materials. Additional serialised storage methods are optional.
Installation
pip install Fedtools
Import the classes:
from FedTools import MonetaryPolicyCommittee
from FedTools import BeigeBooks
from FedTools import FederalReserveMins
Usage
Returns a Pandas DataFrame dataset
, which contains all Meeting Minutes, indexed by Date:
from FedTools import MonetaryPolicyCommittee
dataset = MonetaryPolicyCommittee().find_statements()
MonetaryPolicyCommittee().pickle_data("directory.pkl")
Returns a Pandas DataFrame dataset
, which contains all Beige Books, indexed by Date:
from FedTools import BeigeBooks
dataset = BeigeBooks().find_beige_books()
BeigeBooks().pickle_data("directory.pkl")
Returns a Pandas DataFrame dataset
, which contains all Federal Reserve Minutes since 1993, indexed by Date:
from FedTools import FederalReserveMins
dataset = FederalReserveMins().find_minutes()
FederalReserveMins().pickle_data("directory.pkl")
Edit Default Input Arguments
###Monetary Policy Committee
To modify the MonetaryPolicyCommittee
default parameters, each of the below can be adjusted:
monetary_policy = MonetaryPolicyCommittee(
main_url = 'https://www.federalreserve.gov',
calendar_url = 'https://www.federalreserve.gov/monetarypolicy/fomccalendars.htm',
start_year = 1994,
historical_split = 2014,
verbose = True,
thread_num = 10)
dataset = monetary_policy.find_statements()
BeigeBooks
To modify the BeigeBooks
default parameters, each of the below can be adjusted:
beige_books = BeigeBooks(
main_url = 'https://www.federalreserve.gov',
beige_book_url='https://www.federalreserve.gov/monetarypolicy/beige-book-default.htm',
start_year = 1996,
historical_split = 2019,
verbose = True,
thread_num = 10)
dataset = beige_books.find_beige_books()
FederalReserveMins
To modify the FederalReserveMins
default parameters, each of the below can be adjusted:
fed_mins = FederalReserveMins(
main_url = 'https://www.federalreserve.gov',
calendar_url ='https://www.federalreserve.gov/monetarypolicy/fomccalendars.htm',
start_year = 1995,
historical_split = 2014,
verbose = True,
thread_num = 10)
dataset = fed_mins.find_minutes()
Parameter Explanation
All parameters within the package have default values which can be overriden, with a short explanation of each parameter outlined below:
Argument | Description |
---|---|
main_url | Federal Reserve Open Monetary Policy (FOMC) website URL. (str) |
calendar_url | URL containing a list of FOMC Meeting dates and Minutes release dates. (str) |
beige_book_url | URL containing a list of Beige Book release dates. (str) |
start_year | first year from which to begin collecting data. (int) |
historical_split | first year considered as historical (Check Here for FOMC and Minutes or Check Here for Beige Books). (int) |
verbose | boolean determining printing during scraping. (bool) |
thread_num | the number of threads to use for web scraping. (int) |
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file Fedtools-0.0.7.tar.gz
.
File metadata
- Download URL: Fedtools-0.0.7.tar.gz
- Upload date:
- Size: 6.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8df92e1629795075f2b665e44e05ff2eec00d19e16cd01c66e8e0cad42b9ed43 |
|
MD5 | 99f5361e39c9af4b82fd24eedd97bbf3 |
|
BLAKE2b-256 | 3b25dec08164bb5d4e4323793b7af519b51a003d624a6a8e8636051330f6ab25 |
File details
Details for the file Fedtools-0.0.7-py3-none-any.whl
.
File metadata
- Download URL: Fedtools-0.0.7-py3-none-any.whl
- Upload date:
- Size: 13.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c78475e0cfa0272bd0bef269505dece75c6dc1a82dc56c395c1658dc8b9103fe |
|
MD5 | 400a312b88735463e219462c0e6650bc |
|
BLAKE2b-256 | 90331ae370b3b16f5dda84412b3847e6f40f213d47641df2e5a28199fe0baa66 |