Skip to main content

A Simple Statistical Distribution Library In JAX

Project description

FenbuX

A Simple Probalistic Distribution Library in JAX

fenbu (分布, pronounce like: /fen'bu:/)-X is a simple probalistic distribution library in JAX. The library is encouraged by Distributions.jl. In fenbux, We provide you:

  • A simple and easy-to-use interface like Distributions.jl
  • PyTree input/output
  • Multiple dispatch for different distributions based on plum-dispatch
  • All jax feautures (vmap, pmap, jit, autograd etc.)

See document

Examples

Statistics of Distributions 🤔

import jax.numpy as jnp
from fenbux import variance, skewness, mean
from fenbux.univariate import Normal

μ = {'a': jnp.array([1., 2., 3.]), 'b': jnp.array([4., 5., 6.])} 
σ = {'a': jnp.array([4., 5., 6.]), 'b': jnp.array([7., 8., 9.])}

dist = Normal(μ, σ)
mean(dist) # {'a': Array([1., 2., 3.], dtype=float32), 'b': Array([4., 5., 6.], dtype=float32)}
variance(dist) # {'a': Array([16., 25., 36.], dtype=float32), 'b': Array([49., 64., 81.], dtype=float32)}
skewness(dist) # {'a': Array([0., 0., 0.], dtype=float32), 'b': Array([0., 0., 0.], dtype=float32)}

Random Variables Generation

import jax.random as jr
from fenbux import rand
from fenbux.univariate import Normal


key =  jr.PRNGKey(0)
x = {'a': {'c': {'d': {'e': 1.}}}}
y = {'a': {'c': {'d': {'e': 1.}}}}

dist = Normal(x, y)
rand(dist, key, shape=(3, )) # {'a': {'c': {'d': {'e': Array([1.6248107 , 0.69599575, 0.10169095], dtype=float32)}}}}

Evaluations of Distribution 👩‍🎓

CDF, PDF, and more...

import jax.numpy as jnp
from fenbux import cdf, logpdf
from fenbux.univariate import Normal


μ = jnp.array([1., 2., 3.])
σ = jnp.array([4., 5., 6.])

dist = Normal(μ, σ)
cdf(dist, jnp.array([1., 2., 3.])) # Array([0.5, 0.5, 0.5], dtype=float32)
logpdf(dist, jnp.array([1., 2., 3.])) # Array([-2.305233 , -2.5283763, -2.7106981], dtype=float32)

Nested Transformations of Distribution 🤖

import fenbux as fbx
import jax.numpy as jnp
from fenbux.univariate import Normal

# truncate and censor and affine
d = Normal(0, 1)
fbx.affine(fbx.censor(fbx.truncate(d, 0, 1), 0, 1), 0, 1)
fbx.logpdf(d, 0.5)
Array(-1.0439385, dtype=float32)

Compatible with JAX transformations 😃

  • vmap
import jax.numpy as jnp
from jax import vmap

from fenbux import logpdf
from fenbux.univariate import Normal


dist = Normal({'a': jnp.zeros((2, 3))}, {'a':jnp.ones((2, 3, 5))}) # each batch shape is (2, 3)
x = jnp.zeros((2, 3, 5))
# claim use_batch=True to use vmap
vmap(logpdf, in_axes=(Normal(None, {'a': 2}, use_batch=True), 2))(dist, x) 
  • grad
import jax.numpy as jnp
from jax import jit, grad
from fenbux import logpdf
from fenbux.univariate import Normal

dist = Normal(0., 1.)
grad(logpdf)(dist, 0.)

Speed 🔦

import numpy as np
from scipy.stats import norm
from jax import jit
from fenbux import logpdf, rand
from fenbux.univariate import Normal
from tensorflow_probability.substrates.jax.distributions import Normal as Normal2

dist = Normal(0, 1)
dist2 = Normal2(0, 1)
dist3 = norm(0, 1)
x = np.random.normal(size=100000)

%timeit jit(logpdf)(dist, x).block_until_ready()
%timeit jit(dist2.log_prob)(x).block_until_ready()
%timeit dist3.logpdf(x)
51.2 µs ± 1.47 µs per loop (mean ± std. dev. of 7 runs, 10,000 loops each)
11.1 ms ± 176 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
1.12 ms ± 20.1 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)

Installation

  • Install on your local device.
git clone https://github.com/JiaYaobo/fenbux.git
pip install -e .
  • Install from PyPI.
pip install fenbux

Reference

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fenbux-0.0.4.tar.gz (43.5 kB view details)

Uploaded Source

Built Distribution

fenbux-0.0.4-py3-none-any.whl (67.6 kB view details)

Uploaded Python 3

File details

Details for the file fenbux-0.0.4.tar.gz.

File metadata

  • Download URL: fenbux-0.0.4.tar.gz
  • Upload date:
  • Size: 43.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for fenbux-0.0.4.tar.gz
Algorithm Hash digest
SHA256 1e39fc067b4b27d0f4179fe57c2b343f7069158353c05abff9c3fa0b9084b512
MD5 badac4959be324e60272dc9e34347735
BLAKE2b-256 5e80c7edb0e8b72a802f062298cc08e81167c2a7dda3b6b250b375c7433a1074

See more details on using hashes here.

File details

Details for the file fenbux-0.0.4-py3-none-any.whl.

File metadata

  • Download URL: fenbux-0.0.4-py3-none-any.whl
  • Upload date:
  • Size: 67.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for fenbux-0.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 211052cefb824b5bf270c16b6b53a46ceeba4bb0931dab4706209650a0780073
MD5 94f0299bc5f18e78ac337e88f2baa675
BLAKE2b-256 b584fd92a212a45b690eb07daf2271eb5b612fb275be71aa32617e17e8e315c1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page