Skip to main content

Generate samples for various schemas like json schema, xml schema and regex

Project description

Fences

Tests

Fences is a python tool which lets you create test data based on schemas.

For this, it generates a set of valid samples which fullfil your schema. Additionally, it generates a set of invalid samples which intentionally violate your schema. You can then feed these samples into your software to test. If your software is implemented correctly, it must accept all valid samples and reject all invalid ones.

Unlike other similar tools, fences generate samples systematically instead of randomly. This way, the valid / invalid samples systematically cover all boundaries of your input schema (like placing fences, hence the name).

Installation

Use pip to install Fences:

python -m pip install fences

Fences is a self contained library without any external dependencies. It uses Lark for regex parsing, but in the standalone version where a python file is generated from the grammar beforehand (Mozilla Public License, v. 2.0).

Usage

Regular Expressions

Generate samples for regular expressions:

from fences import parse_regex

graph = parse_regex("a?(c+)b{3,7}")

for i in graph.generate_paths():
    sample = graph.execute(i.path)
    print("Valid:" if i.is_valid else "Invalid:")
    print(sample)
Output
Valid:
cbbb
Valid:
acccbbbbbbb

JSON Schema

Generate samples for json schema:

from fences import parse_json_schema
import json

graph = parse_json_schema({
    'properties': {
        'foo': {
            'type': 'string'
        },
        'bar': {
            'type': 'boolean'
        }
    }
})

for i in graph.generate_paths():
    sample = graph.execute(i.path)
    print("Valid:" if i.is_valid else "Invalid:")
    print(json.dumps(sample, indent=4))
Output
Valid:
{
    "foo": "",
    "bar": true
}
Valid:
{}
Valid:
{
    "foo": "",
    "bar": false
}
Valid:
""
Valid:
[
    "string"
]
Valid:
[
    42
]
Valid:
[
    null
]
Valid:
[
    true
]
Valid:
[
    false
]
Valid:
[
    {}
]
Valid:
[
    []
]
Valid:
true
Valid:
false
Valid:
0
Valid:
null
Invalid:
{
    "foo": 42
}
Invalid:
{
    "foo": null
}
Invalid:
{
    "foo": true,
    "bar": true
}
Invalid:
{
    "foo": false
}
Invalid:
{
    "foo": {},
    "bar": true
}
Invalid:
{
    "foo": []
}
Invalid:
{
    "bar": "string"
}
Invalid:
{
    "bar": 42
}
Invalid:
{
    "bar": null
}
Invalid:
{
    "bar": {}
}
Invalid:
{
    "bar": []
}

XML Schema

Generate samples for XML schema:

from fences import parse_xml_schema
from xml.etree import ElementTree
from xml.dom import minidom

et = ElementTree.fromstring("""<?xml version="1.0" encoding="UTF-8" ?>
    <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
        <xs:element name = 'class'>
            <xs:complexType>
                <xs:sequence>
                    <xs:element name = 'student' type = 'StudentType' minOccurs = '0' maxOccurs = 'unbounded' />
                </xs:sequence>
            </xs:complexType>
        </xs:element>
        <xs:complexType name = "StudentType">
            <xs:sequence>
                <xs:element name = "firstname" type = "xs:string"/>
                <xs:element name = "lastname" type = "xs:string"/>
                <xs:element name = "nickname" type = "xs:string"/>
                <xs:element name = "marks" type = "xs:positiveInteger"/>
            </xs:sequence>
            <xs:attribute name = 'rollno' type = 'xs:positiveInteger'/>
        </xs:complexType>
    </xs:schema>""")

graph = parse_xml_schema(et)
for i in graph.generate_paths():
    sample = graph.execute(i.path)
    s = ElementTree.tostring(sample.getroot())
    print("Valid:" if i.is_valid else "Invalid:")
    print(minidom.parseString(s).toprettyxml(indent="   "))
Output
Valid:
<?xml version="1.0" ?>
<class/>

Valid:
<?xml version="1.0" ?>
<class>
   <student>
      <firstname>foo</firstname>
      <lastname>foo</lastname>
      <nickname>foo</nickname>
      <marks>780</marks>
   </student>
</class>

Valid:
<?xml version="1.0" ?>
<class>
   <student rollno="533">
      <firstname>x</firstname>
      <lastname>x</lastname>
      <nickname>x</nickname>
      <marks>780</marks>
   </student>
</class>

Invalid:
<?xml version="1.0" ?>
<class>
   <student>
      <firstname>foo</firstname>
      <lastname>foo</lastname>
      <nickname>foo</nickname>
      <marks>-10</marks>
   </student>
</class>

Invalid:
<?xml version="1.0" ?>
<class>
   <student rollno="533">
      <firstname>x</firstname>
      <lastname>x</lastname>
      <nickname>x</nickname>
      <marks>foo</marks>
   </student>
</class>

Invalid:
<?xml version="1.0" ?>
<class>
   <student rollno="-10">
      <firstname>foo</firstname>
      <lastname>foo</lastname>
      <nickname>foo</nickname>
      <marks>780</marks>
   </student>
</class>

Invalid:
<?xml version="1.0" ?>
<class>
   <student rollno="foo">
      <firstname>x</firstname>
      <lastname>x</lastname>
      <nickname>x</nickname>
      <marks>780</marks>
   </student>
</class>

Grammar

Generate samples for a grammar:

from fences.grammar.types import NonTerminal, CharacterRange
from fences import parse_grammar

number = NonTerminal("number")
integer = NonTerminal("integer")
fraction = NonTerminal("fraction")
exponent = NonTerminal("exponent")
digit = NonTerminal("digit")
digits = NonTerminal("digits")
one_to_nine = NonTerminal("one_to_nine")
sign = NonTerminal("sign")

grammar = {
    number:      integer + fraction + exponent,
    integer:     digit
                 | one_to_nine + digits
                 | '-' + digit
                 | '-' + one_to_nine + digits,
    digit:       '0'
                 | one_to_nine,
    digits:      digit*(1, None),
    one_to_nine: CharacterRange('1', '9'),
    fraction:    ""
                 | "." + digits,
    exponent:    ""
                 | 'E' + sign + digits
                 | "e" + sign + digits,
    sign:        ["", "+", "-"]
}

graph = parse_grammar(grammar, number)
for i in graph.generate_paths():
    sample = graph.execute(i.path)
    print(sample)
Output
0
91.0901E0901
-0e+9
-10901.0
9E-0109

OpenAPI (Swagger)

You can use Fences to parse an OpenAPI specification and generate a set of sample requests:

from fences.open_api.generate import generate_all, SampleCache
from fences.open_api.open_api import OpenApi

description = {
    'info': {
        'title': 'Video API'
    },
    'paths': {
        '/videos': {
            'get': {
                'operationId': 'listVideos',
                'parameters': [{
                    'name': 'type',
                    'in': 'query',
                    'schema': {
                        'enum': ['public', 'private']
                    }
                }, {
                    'name': 'title',
                    'in': 'query',
                    'schema': {
                        'type': 'string',
                        'minLength': 3
                    }
                }],
                'responses': {}
            }
        },
        '/videos/{videoId}': {
            'patch': {
                'operationId': 'updateVideo',
                'parameters': [
                    {
                        'name': 'videoId',
                        'in': 'path',
                        'schema': {
                            'type': 'number'
                        }
                    }
                ],
                'requestBody': {
                    'content': {
                        'application/json': {
                            'schema': {
                                'type': 'object',
                                'properties': {
                                    'title': {
                                        'type': 'string',
                                        'minLength': 10
                                    }
                                },
                                'required': ['title']
                            }
                        }
                    }
                },
                'responses': {}
            }
        }
    }
}

open_api = OpenApi.from_dict(description)
sample_cache = SampleCache()
for operation in open_api.operations.values():
    graph = generate_all(operation, sample_cache)
    for i in graph.generate_paths():
        request = graph.execute(i.path)
        request.dump()
Output
GET /videos
GET /videos?type=public&title=xxx
GET /videos?type=private
GET /videos?type=%23%23%23%23%23%23%23%23&title=xxx
PATCH /videos/0
  BODY: {"title": "xxxxxxxxxx"}
PATCH /videos/0
PATCH /videos/0
  BODY: {"title": 42}
PATCH /videos/0
  BODY: {"title": null}
PATCH /videos/0
  BODY: {"title": true}
PATCH /videos/0
  BODY: {"title": false}
PATCH /videos/0
  BODY: {"title": {}}
PATCH /videos/0
  BODY: {"title": []}
PATCH /videos/0
  BODY: {}
PATCH /videos/0
  BODY: "string"
PATCH /videos/0
  BODY: 42
PATCH /videos/0
PATCH /videos/0
  BODY: true
PATCH /videos/0
  BODY: false
PATCH /videos/0
  BODY: []

You can execute the generated tests using the request.execute() method. Please note, that you need to install the requests library for this.

Real-World Examples

Find some real-world examples in the examples folder.

Limitations

General:

Fences does not check if your schema is syntactically correct. Fences is designed to be as permissive as possible when parsing a schema but will complain if there is an aspect it does not understand.

For XML:

Python's default XML implementation xml.etree.ElementTree has a very poor support for namespaces (https://docs.python.org/3/library/xml.etree.elementtree.html#parsing-xml-with-namespaces). This might lead to problems when using the targetNamespace attribute in your XML schema.

For Grammars:

Fences currently does not generate invalid samples for grammars.

For OpenAPI:

The test cases generated by Fences are purely syntactic. They do not check for semantics, e.g. if retrieving a deleted resource returns 404.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fences-1.4.0.tar.gz (65.7 kB view details)

Uploaded Source

Built Distribution

fences-1.4.0-py3-none-any.whl (70.9 kB view details)

Uploaded Python 3

File details

Details for the file fences-1.4.0.tar.gz.

File metadata

  • Download URL: fences-1.4.0.tar.gz
  • Upload date:
  • Size: 65.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for fences-1.4.0.tar.gz
Algorithm Hash digest
SHA256 ec8ba50f588667328d5ff2cf6740ebb2ad91db00912ff96f302c84915ae5e275
MD5 4a2a1e6466dba029586a7baf05be738a
BLAKE2b-256 a39f4db8ac8c1c60b504b05033a776cab5b1801404cb9dbce3ae4352dc8888c9

See more details on using hashes here.

File details

Details for the file fences-1.4.0-py3-none-any.whl.

File metadata

  • Download URL: fences-1.4.0-py3-none-any.whl
  • Upload date:
  • Size: 70.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for fences-1.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 ab25ce3a7c948de8724cd3a664800ba4f72835b2d4c330cb251e95e3a24226c0
MD5 c83a891b5a8f99aa4a10ea4f6645dc86
BLAKE2b-256 0955e38c32a5f1ce2a7ededb8b44ff05940ba3bd3e1e0c8229e7bfc7fa90e45d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page