Skip to main content

Generate samples for various schemas like json schema, xml schema and regex

Project description

Fences

Tests

Fences is a python tool which lets you create test data based on schemas.

For this, it generates a set of valid samples which fullfil your schema. Additionally, it generates a set of invalid samples which intentionally violate your schema. You can then feed these samples into your software to test. If your software is implemented correctly, it must accept all valid samples and reject all invalid ones.

Unlike other similar tools, fences generate samples systematically instead of randomly. This way, the valid / invalid samples systematically cover all boundaries of your input schema (like placing fences, hence the name).

Installation

Use pip to install Fences:

python -m pip install fences

Fences is a self contained library without any external dependencies. It uses Lark for regex parsing, but in the standalone version where a python file is generated from the grammar beforehand (Mozilla Public License, v. 2.0).

Usage

Regular Expressions

Generate samples for regular expressions:

from fences import parse_regex

graph = parse_regex("a?(c+)b{3,7}")

for i in graph.generate_paths():
    sample = graph.execute(i.path)
    print("Valid:" if i.is_valid else "Invalid:")
    print(sample)
Output
Valid:
cbbb
Valid:
acccbbbbbbb

JSON Schema

Generate samples for json schema:

from fences import parse_json_schema
import json

graph = parse_json_schema({
    'properties': {
        'foo': {
            'type': 'string'
        },
        'bar': {
            'type': 'boolean'
        }
    }
})

for i in graph.generate_paths():
    sample = graph.execute(i.path)
    print("Valid:" if i.is_valid else "Invalid:")
    print(json.dumps(sample, indent=4))
Output
Valid:
{
    "foo": "",
    "bar": true
}
Valid:
{}
Valid:
{
    "foo": "",
    "bar": false
}
Valid:
""
Valid:
[
    "string"
]
Valid:
[
    42
]
Valid:
[
    null
]
Valid:
[
    true
]
Valid:
[
    false
]
Valid:
[
    {}
]
Valid:
[
    []
]
Valid:
true
Valid:
false
Valid:
0
Valid:
null
Invalid:
{
    "foo": 42
}
Invalid:
{
    "foo": null
}
Invalid:
{
    "foo": true,
    "bar": true
}
Invalid:
{
    "foo": false
}
Invalid:
{
    "foo": {},
    "bar": true
}
Invalid:
{
    "foo": []
}
Invalid:
{
    "bar": "string"
}
Invalid:
{
    "bar": 42
}
Invalid:
{
    "bar": null
}
Invalid:
{
    "bar": {}
}
Invalid:
{
    "bar": []
}

XML Schema

Generate samples for XML schema:

from fences import parse_xml_schema
from xml.etree import ElementTree
from xml.dom import minidom

et = ElementTree.fromstring("""<?xml version="1.0" encoding="UTF-8" ?>
    <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
        <xs:element name = 'class'>
            <xs:complexType>
                <xs:sequence>
                    <xs:element name = 'student' type = 'StudentType' minOccurs = '0' maxOccurs = 'unbounded' />
                </xs:sequence>
            </xs:complexType>
        </xs:element>
        <xs:complexType name = "StudentType">
            <xs:sequence>
                <xs:element name = "firstname" type = "xs:string"/>
                <xs:element name = "lastname" type = "xs:string"/>
                <xs:element name = "nickname" type = "xs:string"/>
                <xs:element name = "marks" type = "xs:positiveInteger"/>
            </xs:sequence>
            <xs:attribute name = 'rollno' type = 'xs:positiveInteger'/>
        </xs:complexType>
    </xs:schema>""")

graph = parse_xml_schema(et)
for i in graph.generate_paths():
    sample = graph.execute(i.path)
    s = ElementTree.tostring(sample.getroot())
    print("Valid:" if i.is_valid else "Invalid:")
    print(minidom.parseString(s).toprettyxml(indent="   "))
Output
Valid:
<?xml version="1.0" ?>
<class/>

Valid:
<?xml version="1.0" ?>
<class>
   <student>
      <firstname>foo</firstname>
      <lastname>foo</lastname>
      <nickname>foo</nickname>
      <marks>780</marks>
   </student>
</class>

Valid:
<?xml version="1.0" ?>
<class>
   <student rollno="533">
      <firstname>x</firstname>
      <lastname>x</lastname>
      <nickname>x</nickname>
      <marks>780</marks>
   </student>
</class>

Invalid:
<?xml version="1.0" ?>
<class>
   <student>
      <firstname>foo</firstname>
      <lastname>foo</lastname>
      <nickname>foo</nickname>
      <marks>-10</marks>
   </student>
</class>

Invalid:
<?xml version="1.0" ?>
<class>
   <student rollno="533">
      <firstname>x</firstname>
      <lastname>x</lastname>
      <nickname>x</nickname>
      <marks>foo</marks>
   </student>
</class>

Invalid:
<?xml version="1.0" ?>
<class>
   <student rollno="-10">
      <firstname>foo</firstname>
      <lastname>foo</lastname>
      <nickname>foo</nickname>
      <marks>780</marks>
   </student>
</class>

Invalid:
<?xml version="1.0" ?>
<class>
   <student rollno="foo">
      <firstname>x</firstname>
      <lastname>x</lastname>
      <nickname>x</nickname>
      <marks>780</marks>
   </student>
</class>

Grammar

Generate samples for a grammar:

from fences.grammar.types import NonTerminal, CharacterRange
from fences import parse_grammar

number = NonTerminal("number")
integer = NonTerminal("integer")
fraction = NonTerminal("fraction")
exponent = NonTerminal("exponent")
digit = NonTerminal("digit")
digits = NonTerminal("digits")
one_to_nine = NonTerminal("one_to_nine")
sign = NonTerminal("sign")

grammar = {
    number:      integer + fraction + exponent,
    integer:     digit
                 | one_to_nine + digits
                 | '-' + digit
                 | '-' + one_to_nine + digits,
    digit:       '0'
                 | one_to_nine,
    digits:      digit*(1, None),
    one_to_nine: CharacterRange('1', '9'),
    fraction:    ""
                 | "." + digits,
    exponent:    ""
                 | 'E' + sign + digits
                 | "e" + sign + digits,
    sign:        ["", "+", "-"]
}

graph = parse_grammar(grammar, number)
for i in graph.generate_paths():
    sample = graph.execute(i.path)
    print(sample)
Output
0
91.0901E0901
-0e+9
-10901.0
9E-0109

OpenAPI (Swagger)

You can use Fences to parse an OpenAPI specification and generate a set of sample requests:

from fences.open_api.generate import generate_all, SampleCache
from fences.open_api.open_api import OpenApi

description = {
    'info': {
        'title': 'Video API'
    },
    'paths': {
        '/videos': {
            'get': {
                'operationId': 'listVideos',
                'parameters': [{
                    'name': 'type',
                    'in': 'query',
                    'schema': {
                        'enum': ['public', 'private']
                    }
                }, {
                    'name': 'title',
                    'in': 'query',
                    'schema': {
                        'type': 'string',
                        'minLength': 3
                    }
                }],
                'responses': {}
            }
        },
        '/videos/{videoId}': {
            'patch': {
                'operationId': 'updateVideo',
                'parameters': [
                    {
                        'name': 'videoId',
                        'in': 'path',
                        'schema': {
                            'type': 'number'
                        }
                    }
                ],
                'requestBody': {
                    'content': {
                        'application/json': {
                            'schema': {
                                'type': 'object',
                                'properties': {
                                    'title': {
                                        'type': 'string',
                                        'minLength': 10
                                    }
                                },
                                'required': ['title']
                            }
                        }
                    }
                },
                'responses': {}
            }
        }
    }
}

open_api = OpenApi.from_dict(description)
sample_cache = SampleCache()
for operation in open_api.operations.values():
    graph = generate_all(operation, sample_cache)
    for i in graph.generate_paths():
        request = graph.execute(i.path)
        request.dump()
Output
GET /videos
GET /videos?type=public&title=xxx
GET /videos?type=private
GET /videos?type=%23%23%23%23%23%23%23%23&title=xxx
PATCH /videos/0
  BODY: {"title": "xxxxxxxxxx"}
PATCH /videos/0
PATCH /videos/0
  BODY: {"title": 42}
PATCH /videos/0
  BODY: {"title": null}
PATCH /videos/0
  BODY: {"title": true}
PATCH /videos/0
  BODY: {"title": false}
PATCH /videos/0
  BODY: {"title": {}}
PATCH /videos/0
  BODY: {"title": []}
PATCH /videos/0
  BODY: {}
PATCH /videos/0
  BODY: "string"
PATCH /videos/0
  BODY: 42
PATCH /videos/0
PATCH /videos/0
  BODY: true
PATCH /videos/0
  BODY: false
PATCH /videos/0
  BODY: []

You can execute the generated tests using the request.execute() method. Please note, that you need to install the requests library for this.

Real-World Examples

Find some real-world examples in the examples folder.

Limitations

General:

Fences does not check if your schema is syntactically correct. Fences is designed to be as permissive as possible when parsing a schema but will complain if there is an aspect it does not understand.

For XML:

Python's default XML implementation xml.etree.ElementTree has a very poor support for namespaces (https://docs.python.org/3/library/xml.etree.elementtree.html#parsing-xml-with-namespaces). This might lead to problems when using the targetNamespace attribute in your XML schema.

For Grammars:

Fences currently does not generate invalid samples for grammars.

For OpenAPI:

The test cases generated by Fences are purely syntactic. They do not check for semantics, e.g. if retrieving a deleted resource returns 404.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fences-1.3.0.tar.gz (65.4 kB view details)

Uploaded Source

Built Distribution

fences-1.3.0-py3-none-any.whl (70.8 kB view details)

Uploaded Python 3

File details

Details for the file fences-1.3.0.tar.gz.

File metadata

  • Download URL: fences-1.3.0.tar.gz
  • Upload date:
  • Size: 65.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for fences-1.3.0.tar.gz
Algorithm Hash digest
SHA256 02ae7bdc701b40fb6bb515efe4ca1788bdde26b0b8e08aa77b250942b43065a9
MD5 c9a35196e3a7ad76c00e8f52d171d368
BLAKE2b-256 a56ae3b40d53393ccdb8f753dadc13029f42cf7f71c08a735b813b410fd92e0d

See more details on using hashes here.

Provenance

File details

Details for the file fences-1.3.0-py3-none-any.whl.

File metadata

  • Download URL: fences-1.3.0-py3-none-any.whl
  • Upload date:
  • Size: 70.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for fences-1.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 198e26e2495d86d2c0ad4c4af788f163f60056e8e197a1e382ab78976564d2d0
MD5 8b32e8a941194d33fa46ed1d025e4dd8
BLAKE2b-256 f1d2a838ba2e35f8391e9f91068dddaefb4c3ed801e72601e303dc5c62ff912a

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page