Skip to main content

FeOs-torch - Automatic differentiation of phase equilibria.

Project description

FeOs-torch - Automatic differentiation of phase equilibria

repository

FeOs-torch combines the FeOs thermodynamics engine with the machine learning/automatic differentiation framework PyTorch.

import torch
from feos_torch import PcSaftPure

# define PC-SAFT parameters
# m, sigma, epsilon_k, mu, kappa_ab, epsilon_k_ab, na, nb
params = torch.tensor([1.5, 3.5, 250.0, 0, 0.03, 1500.0, 1, 1], dtype=torch.float64, requires_grad=True)
pcsaft = PcSaftPure(params.repeat(5, 1))

# evaluate vapor pressures (in Pa)
temperature = torch.tensor([250., 300., 350., 400., 450.], dtype=torch.float64)
_, vp = pcsaft.vapor_pressure(temperature)
print(vp)

# determine the derivatives of the first vapor pressure w.r.t. PC-SAFT parameters
vp[0].backward()
print(params.grad)
tensor([  20693.5960,  216164.6184, 1049770.6187, 3281855.9640, 7875531.7021],
       dtype=torch.float64, grad_fn=<MulBackward0>)
tensor([-6.7923e+04, -1.7737e+04, -7.0413e+02,  0.0000e+00, -5.7458e+05,
        -6.9122e+01, -3.6892e+04, -3.6892e+04], dtype=torch.float64)

Models

The following models and properties are currently implemented in FeOs-torch

model vapor pressure liquid density equilibrium liquid density bubble point pressure dew point pressure
PC-SAFT
gc-PC-SAFT

Cite us

If you find FeOs-torch useful for your own research, consider citing our publication from which this library resulted.

@article{rehner2023mixtures,
  author = {Rehner, Philipp and Bardow, André and Gross, Joachim},
  title = {Modeling Mixtures with PCP-SAFT: Insights from Large-Scale Parametrization and Group-Contribution Method for Binary Interaction Parameters}
  journal = {International Journal of Thermophysics},
  volume = {44},
  number = {12},
  pages = {179},
  year = {2023}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

feos_torch-0.1.0-cp37-abi3-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.7+ Windows x86-64

feos_torch-0.1.0-cp37-abi3-win32.whl (2.2 MB view details)

Uploaded CPython 3.7+ Windows x86

feos_torch-0.1.0-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.17+ x86-64

feos_torch-0.1.0-cp37-abi3-macosx_10_12_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.7+ macOS 10.12+ x86-64

feos_torch-0.1.0-cp37-abi3-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl (3.6 MB view details)

Uploaded CPython 3.7+ macOS 10.12+ universal2 (ARM64, x86-64) macOS 10.12+ x86-64 macOS 11.0+ ARM64

File details

Details for the file feos_torch-0.1.0-cp37-abi3-win_amd64.whl.

File metadata

File hashes

Hashes for feos_torch-0.1.0-cp37-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 f04d7725f4033913f08cc6b1d96eba231631f088debaceb6a569f544a121a3bf
MD5 32a4854d79d52c94260b71f912b4a6bf
BLAKE2b-256 1cf9e67af96f9ae1066bf53b3ec17bcd8510c21e713b8f6d1b727c92599eedc4

See more details on using hashes here.

File details

Details for the file feos_torch-0.1.0-cp37-abi3-win32.whl.

File metadata

  • Download URL: feos_torch-0.1.0-cp37-abi3-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.7+, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for feos_torch-0.1.0-cp37-abi3-win32.whl
Algorithm Hash digest
SHA256 8cf01617c8230c17cd97cef701d84a249872c07c538cfe8fc2c35e9e3ad207f9
MD5 7e8ac9886646cd0bd2ef40f4e0a6297f
BLAKE2b-256 3352f2e7f1792033ee4b898c6ab71bf301831c34ebac2c29fdd1d3099083e340

See more details on using hashes here.

File details

Details for the file feos_torch-0.1.0-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for feos_torch-0.1.0-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dddbc099de1ffd532aef9982f20924c38439de806310a6bff71b61c61ce93876
MD5 be11d1d3b6a72f9872373a16c77e1bb8
BLAKE2b-256 aa1687210b5771b7bf6bfd7cfa09e96e5ff8009e3bd813fb12f3a539edc08b91

See more details on using hashes here.

File details

Details for the file feos_torch-0.1.0-cp37-abi3-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for feos_torch-0.1.0-cp37-abi3-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 90f06432e711401b51d3554c041300a372c3d00fde4daadba36b7f31b2baf22f
MD5 0c02956b8a036264f4dae2aa328c9308
BLAKE2b-256 72e3a8571a8dbe59ad8e5a6591c30ebeaf091566bc32b57040271b7f6d593b62

See more details on using hashes here.

File details

Details for the file feos_torch-0.1.0-cp37-abi3-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl.

File metadata

File hashes

Hashes for feos_torch-0.1.0-cp37-abi3-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl
Algorithm Hash digest
SHA256 5de2511c2a282762e94b2797054ee097524b16949c2cb3d369bc3d640abd69c7
MD5 c15b3e9647d879709a4ed1d85ee7edaa
BLAKE2b-256 3a3783ad2be69f352d85bcb242f792ed76cefe5cd3886544db3127c3f2820a77

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page