Skip to main content

A python package for benchmarking interpretability approaches.

Project description

Ferret circular logo with the name to the right

Latest PyPI version Documentation Status HuggingFace Spaces Demo YouTube Video arxiv preprint downloads badge

ferret is Python library that streamlines the use and benchmarking of interpretability techniques on Transformers models.

ferret is meant to integrate seamlessly with 🤗 transformers models, among which it currently supports text models only. We provide:

  • 🔍 Four established interpretability techniques based on Token-level Feature Attribution. Use them to find the most relevant words to your model output quickly.
  • ⚖️ Six Faithfulness and Plausibility evaluation protocols. Benchmark any token-level explanation against these tests to guide your choice toward the most reliable explainer.

📝 Examples

All around tutorial (to test all explainers, evaluation metrics, and interface with XAI datasets): Colab

Text Classification

  • Intent Detection with Multilingual XLM RoBERTa: Colab

Getting Started

Installation

pip install -U ferret-xai

Our main dependencies are 🤗 tranformers and datasets.

Important Some of our dependencies might use the package name for scikit-learn and that breaks ferret installation.
If your pip install command fails, try:

SKLEARN_ALLOW_DEPRECATED_SKLEARN_PACKAGE_INSTALL=True pip install -U ferret-xai

This is hopefully a temporary situation!

Explain & Benchmark

The code below provides a minimal example to run all the feature-attribution explainers supported by ferret and benchmark them on faithfulness metrics.

We start from a common text classification pipeline

from transformers import AutoModelForSequenceClassification, AutoTokenizer
from ferret import Benchmark

name = "cardiffnlp/twitter-xlm-roberta-base-sentiment"
model = AutoModelForSequenceClassification.from_pretrained(name)
tokenizer = AutoTokenizer.from_pretrained(name)

Using ferret is as simple as:

bench = Benchmark(model, tokenizer)
explanations = bench.explain("You look stunning!", target=1)
evaluations = bench.evaluate_explanations(explanations, target=1)

bench.show_evaluation_table(evaluations)

Be sure to run the code in a Jupyter Notebook/Colab: the cell above will produce a nicely-formatted table to analyze the saliency maps.

Features

ferret offers a painless integration with Hugging Face models and naming conventions. If you are already using the transformers library, you immediately get access to our Explanation and Evaluation API.

Post-Hoc Explainers

Evaluation Metrics

Faithfulness measures:

Plausibility measures:

See our paper for details.

Visualization

The Benchmark class exposes easy-to-use table visualization methods (e.g., within Jupyter Notebooks)

bench = Benchmark(model, tokenizer)

# Pretty-print feature attribution scores by all supported explainers
explanations = bench.explain("You look stunning!")
bench.show_table(explanations)

# Pretty-print all the supported evaluation metrics
evaluations = bench.evaluate_explanations(explanations)
bench.show_evaluation_table(evaluations)

Dataset Evaluations

The Benchmark class has a handy method to compute and average our evaluation metrics across multiple samples from a dataset.

import numpy as np
bench = Benchmark(model, tokenizer)

# Compute and average evaluation scores one of the supported dataset
samples = np.arange(20)
hatexdata = bench.load_dataset("hatexplain")
sample_evaluations =  bench.evaluate_samples(hatexdata, samples)

# Pretty-print the results
bench.show_samples_evaluation_table(sample_evaluations)

Planned Developement

See the changelog file for further details.

  • ✅ GPU acceleartion support for inference (v0.4.0)
  • ✅ Batched Inference for internal methods's approximation steps (e.g., LIME or SHAP) (v0.4.0)
  • ⚙️ Simplified Task API to support NLI, Zero-Shot Text Classification, Language Modeling (branch).
  • ⚙️ Multi-sample explanation generation and evaluation
  • ⚙️ Support to explainers for seq2seq and autoregressive generation through inseq.
  • ⚙️ New evaluation measure: Sensitivity, Stability (Yin et al.)
  • ⚙️ New evaluation measure: Area Under the Threshold-Performance Curve (AUC-TP) (Atanasova et al.)
  • ⚙️ New explainer: Sampling and Occlusion (SOC) (Jin et al., 2020)
  • ⚙️ New explainer: Discretized Integrated Gradient (DIG) (Sanyal and Ren, 2021)
  • ⚙️ New explainer: Value Zeroing (Mohebbi et al, 2023)
  • ⚙️ Support additional form of aggregation over embeddings' hidden dimension.

Authors

Credits

This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.

Logo and graphical assets made by Luca Attanasio.

If you are using ferret for your work, please consider citing us!

@inproceedings{attanasio-etal-2023-ferret,
    title = "ferret: a Framework for Benchmarking Explainers on Transformers",
    author = "Attanasio, Giuseppe and Pastor, Eliana and Di Bonaventura, Chiara and Nozza, Debora",
    booktitle = "Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
    month = may,
    year = "2023",
    publisher = "Association for Computational Linguistics",
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ferret_xai-0.4.2.tar.gz (44.9 kB view details)

Uploaded Source

Built Distribution

ferret_xai-0.4.2-py3-none-any.whl (52.9 kB view details)

Uploaded Python 3

File details

Details for the file ferret_xai-0.4.2.tar.gz.

File metadata

  • Download URL: ferret_xai-0.4.2.tar.gz
  • Upload date:
  • Size: 44.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.10.13 Linux/4.18.0-513.9.1.el8_9.x86_64

File hashes

Hashes for ferret_xai-0.4.2.tar.gz
Algorithm Hash digest
SHA256 292135c8b1b020a8da92a69c6194ecc413b736a4278f075bc1a2a22e14c7df19
MD5 c85d2758674493eb1894a501384c5e76
BLAKE2b-256 cf5b89e4625bcb0e10d423c3c292f94b04fd9ccc27ec54455d956a193aeec589

See more details on using hashes here.

File details

Details for the file ferret_xai-0.4.2-py3-none-any.whl.

File metadata

  • Download URL: ferret_xai-0.4.2-py3-none-any.whl
  • Upload date:
  • Size: 52.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.10.13 Linux/4.18.0-513.9.1.el8_9.x86_64

File hashes

Hashes for ferret_xai-0.4.2-py3-none-any.whl
Algorithm Hash digest
SHA256 20873554afcbc783bc2fc48a97bf20a8ee3fd5723969632609a95bd2fa773836
MD5 c8bf3ff2f2761f5772b9fded002fd133
BLAKE2b-256 a0f2d187644e77b8eb77b8d325de64493c87986fc00026d173f95a52f4c84b39

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page