No project description provided
Project description
fetch-embed
fetch multilingual embed from embed.ttw.workers.dev
Install it
pip install -U fetch-embed
Use it
Make use of the helper function embed_text
endpoints
for two models (dim-52 and dim-768)
via cloudflare: https://embed.ttw.workers.dev/embed/
and https://embed.ttw.workers.dev/embed_la/
In case you cannot access embed.ttw.workers.dev
, you may use ttw.hopto.org
(hosted by noip.com) instead.
Swagger UI: Self-docs for these endpoints
https://embed.ttw.workers.dev/docs
Model 1: multilingual, dim-512
The default endpoint is https://embed.ttw.workers.dev/embed/
from fetch_embed.embed_text import embed_text
res = embed_text(["test a", "测试"])
print(res.shape)
# (2, 512)
Model 2: language agnostic, dim-768
endpoint: https://embed.ttw.workers.dev/embed_la/
from fetch_embed.embed_text import embed_text
endpoint = "https://embed.ttw.workers.dev/embed_la/"
res = embed_text(["test a", "测试"], endpoint=endpoint)
print(res.shape)
# (2, 768)
Consult the embed_text.__doc__
(e.g. print(embed_text.__doc__)
) or its source code for more details.
Access the API directly
from fetch_embed import fetch_embed
res = fetch_embed("test me")
print(res.shape)
# (1, 512)
print(fetch_embed(["test me", "测试123"]).shape
# (2, 512)
# to turn off live progress bar
res = fetch_embed("test me", livepbar=False)
# brief docs
help(fetch_embed)
# fetch_embed(texts:Union[str, List[str]], endpoint:str='http://ttw.hopto.org/embed/', livepbar:bool=True) -> numpy.ndarray
Fetch embed from endpoint.
Plug in endpoint = "https://embed.ttw.workers.dev/embed_la/"
for Model 2, e.g.,
import numpy as np
from fetch_embed import fetch_embed
endpoint = "https://embed.ttw.workers.dev/embed_la/"
res = fetch_embed("test me", endpoint=endpoint)
print(np.array(res).shape)
# (1, 768)
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file fetch-embed-0.1.6.tar.gz
.
File metadata
- Download URL: fetch-embed-0.1.6.tar.gz
- Upload date:
- Size: 4.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.1.5 CPython/3.7.9 Windows/10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 393fbbb5b8f321ba608c7b3b658e73075688e8ccb637a97dd57976863b03456d |
|
MD5 | c92f3031811ce6eab7995237f43be625 |
|
BLAKE2b-256 | 87f066feec7da6c4361f732ba3cc73a3cbf852dfedaaeb77d01d49d2f27e4915 |
File details
Details for the file fetch_embed-0.1.6-py3-none-any.whl
.
File metadata
- Download URL: fetch_embed-0.1.6-py3-none-any.whl
- Upload date:
- Size: 4.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.1.5 CPython/3.7.9 Windows/10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 743b183aecba22bc9bc669097a23c441310a882fbac6ca8c8a57218251030998 |
|
MD5 | 8abfe7a1565c7496285dd0141c5a951d |
|
BLAKE2b-256 | ba333a3084e6026cfad163b7a51cb9a6194afd586ad0b52273d2697bc05f9cf0 |