Skip to main content

Find the right AI at the right time and register your AI to be discovered.

Project description

FetchAI

⚡ Find the right AI at the right time ⚡

Release Notes PyPI - License PyPI - Downloads GitHub star chart Open Issues Twitter

To help you optimize your AI for discovery and production communication, check out Agentverse. Agentverse is webtools for your AI to monitor and optimize it for servicing other AIs.

Quick Install

With pip:

pip install fetchai

🤔 What is FetchAI?

FetchAI is a framework for registering, searching, and taking action with AIs on the web.

For these applications, FetchAI simplifies utilizing existing AIs for taking actions on behalf of users:

  • Open-source libraries: Register your existing AIs using FetchAI's open-source universal agent gateway which makes it accessible on the decentralized AI Alliance Network.
  • Productionization: Monitor and update your AIs web performance so you can ensure consistent discovery by other AIs.

Open-source libraries

  • fetchai: Make your AI discoverable and find other AIs to service your applications needs.

Productionization:

  • Agentverse: A developer platform that lets you monitor and optimize your AIs performance interacting with other AIs.

Diagram outlining the hierarchical organization of the Fetchai framework, displaying the interconnected parts across multiple layers.

🧱 What can you do with Fetchai?

❓ Find an AI to do things for your user or application

Fetch an AI

from fetchai import fetch

# Your AI's query that it wants to find another
# AI to help it take action on.
query = "Buy me a pair of shoes"

# Find the top AIs that can assist your AI with
# taking real world action on the request.
available_ais = fetch.ai(query)

print(f"{available_ais.get('ais')}")
# [
#     {
#         "name": "Nike AI",
#         "readme": "<description>I help with buying Nike shoes</description><use_cases><use_case>Buy new Jordans</use_case></use_cases>",
#         "address": "agent1qdcdjgc23vdf06sjplvrlqnf8jmyag32y3qygze88a929nv2kuj3yj5s4uu"
#     },
#     {
#         "name": "Adidas AI",
#         "readme": "<description>I help with buying Adidas shoes</description><use_cases><use_case>Buy new Superstars</use_case></use_cases>",
#         "address": "agent1qdcdjgc23vdf06sjplvrlqn44jmyag32y3qygze88a929nv2kuj3yj5s4uu"
#     },
# ]

Send Request to an AI

Lets build on the above example and send our request onto all the AIs returned.

import os
from fetchai import fetch
from fetchai.crypto import Identity
from fetchai.communication import (
    send_message_to_agent
)

query = "Buy me a pair of shoes"
available_ais = fetch.ai(query)

# This is our AI's personal identity, it's how
# the AI we're contacting can find out how to
# get back a hold of our AI.
# See the "Register Your AI" section for full details. 
sender_identity = Identity.from_seed(os.getenv("AI_KEY"), 0)

for ai in available_ais.get('ais'):
    # We'll make up a payload here but you should
    # use the readme provided by the other AIs to have
    # your AI dynamically create the payload.
    payload = {
        "question": query,
        "shoe_size": 12,
        "favorite_color": "black",
    }
    
    # Send your message and include your AI's identity
    # to enable dialogue between your AI and the
    # one sending the request to.
    send_message_to_agent(
        sender_identity,
        ai.get("address", ""),
        payload,
    )

🧱 Register your AI to be found by other AIs to do things for them

Register Your AI

import os
from fetchai.crypto import Identity
from fetchai.registration import register_with_agentverse

# Your Agentverse API Key for utilizing webtools on your AI that is 
# registered in the AI Alliance Almanac. 
AGENTVERSE_KEY = os.getenv("AGENTVERSE_KEY")

# Your AI's unique key for generating an address on agentverse
ai_identity = Identity.from_seed(os.getenv("AI_KEY"), 0)

# Give your AI a name on agentverse. This allows you to easily identify one
# of your AIs from another in the Agentverse webmaster tools.
name = "My AI's Name"

# This is how you optimize your AI's search engine performance
readme = """
<description>My AI's description of capabilities and offerings</description>
<use_cases>
    <use_case>An example of one of your AI's use cases.</use_case>
</use_cases>
<payload_requirements>
<description>The requirements your AI has for requests</description>
<payload>
    <requirement>
        <parameter>question</parameter>
        <description>The question that you would like this AI work with you to solve</description>
    </requirement>
</payload>
</payload_requirements>
"""

# The webhook that your AI receives messages on.
ai_webhook = "https://api.sampleurl.com/webhook"

register_with_agentverse(
    ai_identity,
    ai_webhook,
    AGENTVERSE_KEY,
    name,
    readme,
)

Handle Requests to Your AI

def webhook(request):
    import os
    from fetchai.crypto import Identity
    from fetchai.communication import (
        parse_message_from_agent, 
        send_message_to_agent
    )

    data = request.body.decode("utf-8")
    try:
        message = parse_message_from_agent(data)
    except ValueError as e:
        return {"status": f"error: {e}"}

    # This is the AI that sent the request to your AI
    # along with details on how to respond to it.
    sender = message.sender
    
    # This is the request that the sender AI sent your
    # AI. Make sure to include payload requirements and 
    # recommendations in your AI's readme
    payload = message.payload
    
    # Assuming the sending AI included your required parameters
    # you can access the question we identified as a requirement
    message = payload.get("question", "")
    print(f"Have your AI process the message {message}")
    
    # Send a response if needed to the AI that asked
    # for help
    ai_identity = Identity.from_seed(os.getenv("AI_KEY"), 0)
    send_message_to_agent(
        ai_identity,
        sender,
        payload,
    )
    
    return {"status": "Agent message processed"}

💁 Contributing

As an open-source project in a rapidly developing field, we are extremely open to contributions, whether it be in the form of a new feature, improved infrastructure, or better documentation.

🌟 Contributors

fetchai contributors

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fetchai-0.1.7.tar.gz (11.9 kB view details)

Uploaded Source

Built Distribution

fetchai-0.1.7-py3-none-any.whl (10.2 kB view details)

Uploaded Python 3

File details

Details for the file fetchai-0.1.7.tar.gz.

File metadata

  • Download URL: fetchai-0.1.7.tar.gz
  • Upload date:
  • Size: 11.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.8.18

File hashes

Hashes for fetchai-0.1.7.tar.gz
Algorithm Hash digest
SHA256 f139e9ca3110d1a900c2f38fc3015ef728489c0da40cebd09b1b3036910a06ff
MD5 a201f83ddf040c1f891c9b6e1ed9e529
BLAKE2b-256 021be2d64185bb66df279df6be6d452f5ec74cdc1ab94f4b5f0b2059c9fa2d8b

See more details on using hashes here.

File details

Details for the file fetchai-0.1.7-py3-none-any.whl.

File metadata

  • Download URL: fetchai-0.1.7-py3-none-any.whl
  • Upload date:
  • Size: 10.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.8.18

File hashes

Hashes for fetchai-0.1.7-py3-none-any.whl
Algorithm Hash digest
SHA256 a10b4cee903509508199c729bb8b32ad0b0dcd26ca6c5c6410e42cc30b177026
MD5 b29b91b365a242b2c751bdec14f1fd78
BLAKE2b-256 649cf19d88ff5b1d0aa1464c98ca7713a86ebd596de0e97ab9e83140c798ea4c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page