Skip to main content

No project description provided

Project description

FFMPEGCV is an alternative to OPENCV for video read and write.

The ffmpegcv provide Video Reader and Video Witer with ffmpeg backbone, which are faster and powerful than cv2.

  • The ffmpegcv is api compatible to open-cv.
  • The ffmpegcv can use GPU accelerate encoding and decoding.
  • The ffmpegcv support much more video codecs v.s. open-cv.
  • The ffmpegcv support RGB & BGR format as you like.
  • The ffmpegcv can resize video to specific size with/without padding.

In all, ffmpegcv is just similar to opencv api. But is faster and with more codecs.

Basic example

Read a video by GPU, and rewrite it.

vidin = ffmpegcv.VideoCaptureNV(vfile_in)
vidout = ffmpegcv.VideoWriter(vfile_out, 'h264', vidin.fps)

with vidin, vidout:
    for frame in vidin:
        cv2.imshow('image', frame)
        vidout.write(frame)

Install

You need to download ffmpeg before you can use ffmpegcv

conda install ffmpeg

pip install ffmpegcv

GPU Accelation

  • Support NVIDIA card only.
  • Perfect in the Windows. That ffmpeg supports NVIDIA acceleration just by conda install.
  • Struggle in the Linux. That ffmpeg didn't orginally support NVIDIA accelerate. Please re-compile the ffmpeg by yourself. See the link
  • Infeasible in the MacOS. That ffmpeg didn't supports NVIDIA at all.

Video Reader


The ffmpegcv is just similar to opencv in api.

# open cv
import cv2
cap = cv2.VideoCapture(file)
while True:
    ret, frame = cap.read()
    if not ret:
        break
    pass

# ffmpegcv
import ffmpegcv
cap = ffmpegcv.VideoCapture(file)
while True:
    ret, frame = cap.read()
    if not ret:
        break
    pass
cap.release()

# alternative
cap = ffmpegcv.VideoCapture(file)
nframe = len(cap)
for frame in cap:
    pass
cap.release()

# more pythonic, recommand
with ffmpegcv.VideoCapture(file) as cap:
    nframe = len(cap)
    for iframe, frame in enumerate(cap):
        if iframe>100: break
        pass

Use GPU to accelerate decoding. It depends on the video codes. h264_nvcuvid, hevc_nvcuvid ....

cap_cpu = ffmpegcv.VideoCapture(file)
cap_gpu = ffmpegcv.VideoCapture(file, codec='h264_cuvid') #NVIDIA GPU0
cap_gpu0 = ffmpegcv.VideoCaptureNV(file)         #NVIDIA GPU0
cap_gpu1 = ffmpegcv.VideoCaptureNV(file, gpu=1)  #NVIDIA GPU1

Use rgb24 instead of bgr24

cap = ffmpegcv.VideoCapture(file, pix_fmt='rgb24')
ret, frame = cap.read()
plt.imshow(frame)

Crop video, which will be much faster than read the whole canvas.

cap = ffmpegcv.VideoCapture(file, crop_xywh=(0, 0, 640, 480))

Resize the video to the given size.

cap = ffmpegcv.VideoCapture(file, resize=(640, 480))

Resize and keep the aspect ratio with black border padding.

cap = ffmpegcv.VideoCapture(file, resize=(640, 480), resize_keepratio=True)

Crop and then resize the video.

cap = ffmpegcv.VideoCapture(file, crop_xywh=(0, 0, 640, 480), resize=(512, 512))

Video Writer


# cv2
out = cv2.VideoWriter('outpy.avi',
                       cv2.VideoWriter_fourcc('M','J','P','G'), 
                       10, 
                       (w, h))
out.write(frame1)
out.write(frame2)
out.release()

# ffmpegcv, default codec is 'h264' in cpu 'h265' in gpu.
# frameSize is decided by the size of the first frame
out = ffmpegcv.VideoWriter('outpy.avi', None, 10)
out.write(frame1)
out.write(frame2)
out.release()

# more pythonic
with ffmpegcv.VideoWriter('outpy.avi', None, 10) as out:
    out.write(frame1)
    out.write(frame2)

Use GPU to accelerate encoding. Such as h264_nvenc, hevc_nvenc.

out_cpu = ffmpegcv.VideoWriter('outpy.avi', None, 10)
out_gpu0 = ffmpegcv.VideoWriterNV('outpy.avi', 'h264', 10)        #NVIDIA GPU0
out_gpu1 = ffmpegcv.VideoWriterNV('outpy.avi', 'hevc', 10, gpu=1) #NVIDIA GPU1

Input image is rgb24 instead of bgr24

out = ffmpegcv.VideoWriter('outpy.avi', None, 10, pix_fmt='rgb24')
out.write(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))

Video Reader and Writer


import ffmpegcv
vfile_in = 'A.mp4'
vfile_out = 'A_h264.mp4'
vidin = ffmpegcv.VideoCapture(vfile_in)
vidout = ffmpegcv.VideoWriter(vfile_out, None, vidin.fps)

with vidin, vidout:
    for frame in vidin:
        vidout.write(frame)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ffmpegcv-0.2.5.tar.gz (10.4 kB view details)

Uploaded Source

File details

Details for the file ffmpegcv-0.2.5.tar.gz.

File metadata

  • Download URL: ffmpegcv-0.2.5.tar.gz
  • Upload date:
  • Size: 10.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.8.0 tqdm/4.30.0 CPython/3.8.10

File hashes

Hashes for ffmpegcv-0.2.5.tar.gz
Algorithm Hash digest
SHA256 2df7e7a480e23664ce256d79bd764d7fd30e3edc50414becd0ec9e093d0ffc27
MD5 7802963e8c9acdc48c667662ee709320
BLAKE2b-256 b2bfb2c0b937d0bb18e6fb0b944f9dca461ea257b748b29de3ecd7485c003482

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page