No project description provided
Project description
FFMPEGCV is an alternative to OPENCV for video read and write.
The ffmpegcv provide Video Reader and Video Witer with ffmpeg backbone, which are faster and powerful than cv2.
- The ffmpegcv is api compatible to open-cv.
- The ffmpegcv can use GPU accelerate encoding and decoding*.
- The ffmpegcv support much more video codecs v.s. open-cv.
- The ffmpegcv support RGB & BGR format as you like.
- The ffmpegcv can support ROI operations.You can crop, resize and pad the ROI.
In all, ffmpegcv is just similar to opencv api. But is faster* and with more codecs.
Basic example
Read a video by CPU, and rewrite it by GPU.
vidin = ffmpegcv.VideoCapture(vfile_in)
vidout = ffmpegcv.VideoWriterNV(vfile_out, 'h264', vidin.fps)
with vidin, vidout:
for frame in vidin:
cv2.imshow('image', frame)
vidout.write(frame)
Read the camera by device name.
cap = ffmpegcv.VideoCaptureCAM("Integrated Camera")
Install
You need to download ffmpeg before you can use ffmpegcv
conda install ffmpeg
pip install ffmpegcv
GPU Accelation
- Support NVIDIA card only.
- Perfect in the Windows. That ffmpeg supports NVIDIA acceleration just by conda install.
- Struggle in the Linux. That ffmpeg didn't orginally support NVIDIA accelerate. Please re-compile the ffmpeg by yourself. See the link
- Works in the Google Colab notebook without pain (no need to recompile ffmpeg).
- Infeasible in the MacOS. That ffmpeg didn't supports NVIDIA at all.
* The ffmegcv GPU reader is a bit slower than CPU reader, but much faster when use ROI operations (crop, resize, pad).
Codecs
Codecs | OpenCV-reader | ffmpegcv-cpu-r | gpu-r | OpenCV-writer | ffmpegcv-cpu-w | gpu-w |
---|---|---|---|---|---|---|
h264 | √ | √ | √ | × | √ | √ |
h265 (hevc) | not sure | √ | √ | × | √ | √ |
mjpeg | √ | √ | × | √ | √ | × |
mpeg | √ | √ | × | √ | √ | × |
others | not sure | ffmpeg -decoders | × | not sure | ffmpeg -encoders | × |
Benchmark
On the way...
Video Reader
The ffmpegcv is just similar to opencv in api.
# open cv
import cv2
cap = cv2.VideoCapture(file)
while True:
ret, frame = cap.read()
if not ret:
break
pass
# ffmpegcv
import ffmpegcv
cap = ffmpegcv.VideoCapture(file)
while True:
ret, frame = cap.read()
if not ret:
break
pass
cap.release()
# alternative
cap = ffmpegcv.VideoCapture(file)
nframe = len(cap)
for frame in cap:
pass
cap.release()
# more pythonic, recommand
with ffmpegcv.VideoCapture(file) as cap:
nframe = len(cap)
for iframe, frame in enumerate(cap):
if iframe>100: break
pass
Use GPU to accelerate decoding. It depends on the video codes. h264_nvcuvid, hevc_nvcuvid ....
cap_cpu = ffmpegcv.VideoCapture(file)
cap_gpu = ffmpegcv.VideoCapture(file, codec='h264_cuvid') #NVIDIA GPU0
cap_gpu0 = ffmpegcv.VideoCaptureNV(file) #NVIDIA GPU0
cap_gpu1 = ffmpegcv.VideoCaptureNV(file, gpu=1) #NVIDIA GPU1
Use rgb24 instead of bgr24
cap = ffmpegcv.VideoCapture(file, pix_fmt='rgb24')
ret, frame = cap.read()
plt.imshow(frame)
ROI Operations
You can crop, resize and pad the video. These ROI operation is ffmpegcv-GPU
> ffmpegcv-CPU
>> opencv
.
Crop video, which will be much faster than read the whole canvas.
cap = ffmpegcv.VideoCapture(file, crop_xywh=(0, 0, 640, 480))
Resize the video to the given size.
cap = ffmpegcv.VideoCapture(file, resize=(640, 480))
Resize and keep the aspect ratio with black border padding.
cap = ffmpegcv.VideoCapture(file, resize=(640, 480), resize_keepratio=True)
Crop and then resize the video.
cap = ffmpegcv.VideoCapture(file, crop_xywh=(0, 0, 640, 480), resize=(512, 512))
Video Writer
# cv2
out = cv2.VideoWriter('outpy.avi',
cv2.VideoWriter_fourcc('M','J','P','G'),
10,
(w, h))
out.write(frame1)
out.write(frame2)
out.release()
# ffmpegcv, default codec is 'h264' in cpu 'h265' in gpu.
# frameSize is decided by the size of the first frame
out = ffmpegcv.VideoWriter('outpy.mp4', None, 10)
out.write(frame1)
out.write(frame2)
out.release()
# more pythonic
with ffmpegcv.VideoWriter('outpy.mp4', None, 10) as out:
out.write(frame1)
out.write(frame2)
Use GPU to accelerate encoding. Such as h264_nvenc, hevc_nvenc.
out_cpu = ffmpegcv.VideoWriter('outpy.mp4', None, 10)
out_gpu0 = ffmpegcv.VideoWriterNV('outpy.mp4', 'h264', 10) #NVIDIA GPU0
out_gpu1 = ffmpegcv.VideoWriterNV('outpy.mp4', 'hevc', 10, gpu=1) #NVIDIA GPU1
Input image is rgb24 instead of bgr24
out = ffmpegcv.VideoWriter('outpy.mp4', None, 10, pix_fmt='rgb24')
out.write(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
Video Reader and Writer
import ffmpegcv
vfile_in = 'A.mp4'
vfile_out = 'A_h264.mp4'
vidin = ffmpegcv.VideoCapture(vfile_in)
vidout = ffmpegcv.VideoWriter(vfile_out, None, vidin.fps)
with vidin, vidout:
for frame in vidin:
vidout.write(frame)
Camera Reader
Experimental feature. The ffmpegcv offers Camera reader. Which is consistent with VideoFiler reader.
- The
VideoCaptureCAM
aims to support ROI operations. The Opencv will be general fascinating than ffmpegcv in camera read. I recommand the opencv in most camera reading case. - The ffmpegcv can use name to retrieve the camera device. Use
ffmpegcv.VideoCaptureCAM("Integrated Camera")
is readable thancv2.VideoCaptureCAM(0)
. - The
VideoCaptureCAM
will be laggy and dropping frames if your post-process takes long time. The VideoCaptureCAM will buffer the recent frames. - The
VideoCaptureCAM
is continously working on background even if you didn't read it. Please release it in time. - Works perfect in Windows, not-perfect in Linux and macOS.
import cv2
cap = cv2.VideoCapture(0)
while True:
ret, frame = cap.read()
cv2.imshow('frame', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
# ffmpegcv, in Windows&Linux
import ffmpegcv
cap = ffmpegcv.VideoCaptureCAM(0)
while True:
ret, frame = cap.read()
cv2.imshow('frame', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
# ffmpegcv use by camera name, in Windows&Linux
cap = ffmpegcv.VideoCaptureCAM("Integrated Camera")
# ffmpegcv use camera path if multiple cameras conflict
cap = ffmpegcv.VideoCaptureCAM('@device_pnp_\\\\?\\usb#vid_2304&'
'pid_oot#media#0001#{65e8773d-8f56-11d0-a3b9-00a0c9223196}'
'\\global')
# ffmpegcv use camera with ROI operations
cap = ffmpegcv.VideoCaptureCAM("Integrated Camera", crop_xywh=(0, 0, 640, 480), resize=(512, 512), resize_keepratio=True)
list all camera devices
from ffmpegcv.ffmpeg_reader_camera import query_camera_devices
devices = query_camera_devices()
print(devices)
{0: ('Integrated Camera', '@device_pnp_\\?\usb#vid_2304&pid_oot#media#0001#{65e8773d-8f56-11d0-a3b9-00a0c9223196}\global'),
1: ('OBS Virtual Camera', '@device_sw_{860BB310-5D01-11D0-BD3B-00A0C911CE86}\{A3FCE0F5-3493-419F-958A-ABA1250EC20B}')}
Set the camera resolution, fps, vcodec/pixel-format
from ffmpegcv.ffmpeg_reader_camera import query_camera_options
options = query_camera_options(0) # or query_camera_options("Integrated Camera")
print(options)
cap = ffmpegcv.VideoCaptureCAM(0, **options[-1])
[{'camcodec': 'mjpeg', 'campix_fmt': None, 'camsize_wh': (1280, 720), 'camfps': 60.0002}, {'camcodec': 'mjpeg', 'campix_fmt': None, 'camsize_wh': (640, 480), 'camfps': 60.0002}, {'camcodec': 'mjpeg', 'campix_fmt': None, 'camsize_wh': (1920, 1080), 'camfps': 60.0002}, {'camcodec': None, 'campix_fmt': 'yuyv422', 'camsize_wh': (1280, 720), 'camfps': 10}, {'camcodec': None, 'campix_fmt': 'yuyv422', 'camsize_wh': (640, 480), 'camfps': 30}, {'camcodec': None, 'campix_fmt': 'yuyv422', 'camsize_wh': (1920, 1080), 'camfps': 5}]
Known issues
- The VideoCaptureCAM didn't give a smooth experience in macOS. You must specify all the camera parameters. And the query_camera_options woun't give any suggestion. That's because the
ffmpeg
cannot list device options using mac nativeavfoundation
.
# The macOS requires full argument.
cap = ffmpegcv.VideoCaptureCAM('FaceTime HD Camera', camsize_wh=(1280,720), camfps=30, campix_fmt='nv12')
- The VideoCaptureCAM cann't list the FPS in linux. Because the
ffmpeg
cound't query the device's FPS using linux nativev4l2
module. However, it's just OK to let the FPS blank.
Stream Reader
Experimental feature. The ffmpegcv offers Camera reader. Which is consistent with VideoFiler reader. The feature is like a camera. Becareful when using it.
- Support
RTSP
,RTP
,RTMP
,HTTP
,HTTPS
streams. - The
VideoCaptureStream
will be laggy and dropping frames if your post-process takes long time. The VideoCaptureCAM will buffer the recent frames. - The
VideoCaptureStream
is continously working on background even if you didn't read it. Please release it in time.
import cv2
stream_url = 'http://devimages.apple.com.edgekey.net/streaming/examples/bipbop_4x3/gear2/prog_index.m3u8'
cap = cv2.VideoCapture(stream_url, cv2.CAP_FFMPEG)
if not cap.isOpened():
print('Cannot open the stream')
exit(-1)
while True:
ret, frame = cap.read()
if not ret:
break
pass
# ffmpegcv, in Windows&Linux
import ffmpegcv
cap = ffmpegcv.VideoCaptureStream(stream_url)
while True:
ret, frame = cap.read()
if not ret:
break
pass
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file ffmpegcv-0.3.1.tar.gz
.
File metadata
- Download URL: ffmpegcv-0.3.1.tar.gz
- Upload date:
- Size: 17.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.8.0 tqdm/4.30.0 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 696ebf5e3c073eef01f6c7ea348997961e2af559ea9370ecdc1c8c5bf7ebf1a5 |
|
MD5 | c88498d0510eb265a558ee08f8c87d6d |
|
BLAKE2b-256 | 34dddd4b957b061542836fed14a4aa04dce1c47b4919fc2cc4d883c26d0d388d |