Skip to main content

No project description provided

Project description

FFMPEGCV is an alternative to OPENCV for video read and write.

Python versions PyPI version PyPI downloads Code size Last Commit

English Version | 中文版本 | Resume 开发者简历 陈昕枫

The ffmpegcv provide Video Reader and Video Witer with ffmpeg backbone, which are faster and powerful than cv2. Integrating ffmpegcv into your deeplearning pipeline is very smooth.

  • The ffmpegcv is api compatible to open-cv.
  • The ffmpegcv can use GPU accelerate encoding and decoding*.
  • The ffmpegcv supports much more video codecs v.s. open-cv.
  • The ffmpegcv supports RGB & BGR & GRAY format as you like.
  • The ffmpegcv supports fp32 CHW & HWC format shortcut to CUDA memory.
  • The ffmpegcv supports Stream reading (IP Camera) in low latency.
  • The ffmpegcv supports ROI operations.You can crop, resize and pad the ROI.

In all, ffmpegcv is just similar to opencv api. But it has more codecs and does't require opencv installed at all. It's great for deeplearning pipeline.

Functions:

  • VideoWriter: Write a video file.
  • VideoCapture: Read a video file.
  • VideoCaptureNV: Read a video file by NVIDIA GPU.
  • VideoCaptureQSV: Read a video file by Intel QuickSync Video.
  • VideoCaptureCAM: Read a camera.
  • VideoCaptureStream: Read a RTP/RTSP/RTMP/HTTP stream.
  • VideoCaptureStreamRT: Read a RTSP stream (IP Camera) in real time low latency as possible.
  • noblock: Read/Write a video file in background using mulitprocssing.
  • toCUDA: Translate a video/stream as CHW/HWC-float32 format into CUDA device, >2x faster.

Install

You need to download ffmpeg before you can use ffmpegcv.

 #1A. LINUX: sudo apt install ffmpeg
 #1B. MAC (No NVIDIA GPU): brew install ffmpeg
 #1C. WINDOWS: download ffmpeg and add to the path
 #1D. CONDA: conda install ffmpeg=6.0.0     #don't use the default 4.x.x version
 
 #2. python
 pip install ffmpegcv                                      #stable verison
 pip install git+https://github.com/chenxinfeng4/ffmpegcv  #latest verison

 #3. recommand when using cuda
 pip install ffmpegcv[cuda]

When should choose ffmpegcv other than opencv:

  • The opencv is hard to install. The ffmpegcv only requires numpy and FFmpeg, works across Mac/Windows/Linux platforms.
  • The opencv packages too much image processing toolbox. You just want a simple video/camero IO with GPU accessible.
  • The opencv didn't support h264/h265 and other video writers.
  • You want to crop, resize and pad the video/camero ROI.
  • You are interested in deeplearning pipeline.

Basic example

Read a video by CPU, and rewrite it by GPU.

vidin = ffmpegcv.VideoCapture(vfile_in)
vidout = ffmpegcv.VideoWriterNV(vfile_out, 'h264', vidin.fps)  #NVIDIA-GPU

with vidin, vidout:
    for frame in vidin:
        cv2.imshow('image', frame)
        vidout.write(frame)

Read the camera.

# by device ID
cap = ffmpegcv.VideoCaptureCAM(0)
# by device name
cap = ffmpegcv.VideoCaptureCAM("Integrated Camera")

Deeplearning pipeline.

"""
          ——————————  NVIDIA GPU accelerating ⤴⤴ ———————
          |                                              |
          V                                              V
video -> decode -> crop -> resize -> RGB -> CUDA:CHW float32 -> model
"""
cap = ffmpegcv.toCUDA(
    ffmpegcv.VideoCaptureNV(file, pix_fmt='nv12', resize=(W,H)),
    tensor_format='chw')

for frame_CHW_cuda in cap:
    frame_CHW_cuda = (frame_CHW_cuda - mean) / std
    result = model(frame_CHW_cuda)

Cross platform

The ffmpegcv is based on Python+FFmpeg, it can cross platform among Windows, Linux, Mac, X86, Armsystems.

GPU Acceleration

  • Support NVIDIA card only, test in x86_64 only.
  • Works in Windows, Linux and Anaconda.
  • Works in the Google Colab notebook.
  • Infeasible in the MacOS. That ffmpeg didn't supports NVIDIA at all.

* The ffmegcv GPU reader is a bit slower than CPU reader, but much faster when use ROI operations (crop, resize, pad).

Codecs

Codecs OpenCV-reader ffmpegcv-cpu-r gpu-r OpenCV-writer ffmpegcv-cpu-w gpu-w
h264 ×
h265 (hevc) not sure ×
mjpeg × ×
mpeg × ×
others not sure ffmpeg -decoders × not sure ffmpeg -encoders ×

Benchmark

On the way...(maybe never)

Video Reader


The ffmpegcv is just similar to opencv in api.

# open cv
import cv2
cap = cv2.VideoCapture(file)
while True:
    ret, frame = cap.read()
    if not ret:
        break
    pass

# ffmpegcv
import ffmpegcv
cap = ffmpegcv.VideoCapture(file)
while True:
    ret, frame = cap.read()
    if not ret:
        break
    pass
cap.release()

# alternative
cap = ffmpegcv.VideoCapture(file)
nframe = len(cap)
for frame in cap:
    pass
cap.release()

# more pythonic, recommand
with ffmpegcv.VideoCapture(file) as cap:
    nframe = len(cap)
    for iframe, frame in enumerate(cap):
        if iframe>100: break
        pass

Use GPU to accelerate decoding. It depends on the video codes. h264_nvcuvid, hevc_nvcuvid ....

cap_cpu = ffmpegcv.VideoCapture(file)
cap_gpu = ffmpegcv.VideoCapture(file, codec='h264_cuvid') #NVIDIA GPU0
cap_gpu0 = ffmpegcv.VideoCaptureNV(file)         #NVIDIA GPU0
cap_gpu1 = ffmpegcv.VideoCaptureNV(file, gpu=1)  #NVIDIA GPU1
cap_qsv = ffmpegcv.VideoCaptureQSV(file)         #Intel QSV, experimental

Use rgb24 instead of bgr24. The gray version would be more efficient.

cap = ffmpegcv.VideoCapture(file, pix_fmt='rgb24') #rgb24, bgr24, gray
ret, frame = cap.read()
plt.imshow(frame)

ROI Operations

You can crop, resize and pad the video. These ROI operation is ffmpegcv-GPU > ffmpegcv-CPU >> opencv.

Crop video, which will be much faster than read the whole canvas.

cap = ffmpegcv.VideoCapture(file, crop_xywh=(0, 0, 640, 480))

Resize the video to the given size.

cap = ffmpegcv.VideoCapture(file, resize=(640, 480))

Resize and keep the aspect ratio with black border padding.

cap = ffmpegcv.VideoCapture(file, resize=(640, 480), resize_keepratio=True)

Crop and then resize the video.

cap = ffmpegcv.VideoCapture(file, crop_xywh=(0, 0, 640, 480), resize=(512, 512))

toCUDA device


The ffmpegcv can translate the video/stream from HWC-uint8 cpu to CHW-float32 in CUDA device. It significantly reduce your cpu load, and get >2x faster than your manually convertion.

Prepare your environment. The cuda environment is required. The pycuda package is required. The pytorch package is non-essential.

nvcc --version # check you've installed NVIDIA CUDA Compiler

pip install ffmpegcv[cuda] #or pip install the pycuda

# Read a video file to CUDA device, original
cap = ffmpegcv.VideoCaptureNV(file, pix_fmt='rgb24')
ret, frame_HWC_CPU = cap.read()
frame_CHW_CUDA = torch.from_numpy(frame_HWC_CPU).permute(2, 0, 1).cuda().contiguous().float()    # 120fps, 1200% CPU load

# speed up
cap = toCUDA(ffmpegcv.VideoCapture(file, pix_fmt='yuv420p')) #pix_fmt: 'yuv420p' or 'nv12' only
cap = toCUDA(ffmpegcv.VideoCaptureNV(file, pix_fmt='nv12'))  #'nv12' is better for gpu
cap = toCUDA(vid, tensor_format='chw') #tensor format:'chw'(default) or 'hwc', fp32 precision
cap = toCUDA(vid, gpu=1) #choose gpu

# read to the cuda device
ret, frame_CHW_pycuda = cap.read()     #380fps, 200% CPU load, dtype is [pycuda array]
ret, frame_CHW_pycudamem = cap.read_cudamem()  #dtype is  [pycuda mem_alloc]
ret, frame_CHW_CUDA = cap.read_torch()  #dtype is  [pytorch tensor]
ret, _ = cap.read_torch(frame_CHW_CUDA)  #no copy, but need to specify the output memory

frame_CHW_pycuda[:] = (frame_CHW_pycuda - mean) / std  #normalize

How can toCUDA make it faster in your deeplearning pipeline than opencv or ffmpeg?

  1. The opencv/ffmpeg uses the cpu to convert video pix_fmt from original YUV to RGB24, which is slow. The ffmpegcv use the cuda to accelerate pix_fmt convertion.
  2. Use yuv420p or nv12 can save the cpu load and reduce the memory copy from CPU to GPU.
  3. The ffmpeg stores the image as HWC format. The ffmpegcv can use HWC & CHW format to accelerate the video reading.

Video Writer


# cv2
out = cv2.VideoWriter('outpy.avi',
                       cv2.VideoWriter_fourcc('M','J','P','G'), 
                       10, 
                       (w, h))
out.write(frame1)
out.write(frame2)
out.release()

# ffmpegcv, default codec is 'h264' in cpu 'h265' in gpu.
# frameSize is decided by the size of the first frame
out = ffmpegcv.VideoWriter('outpy.mp4', None, 10)
out.write(frame1)
out.write(frame2)
out.release()

# more pythonic
with ffmpegcv.VideoWriter('outpy.mp4', None, 10) as out:
    out.write(frame1)
    out.write(frame2)

Use GPU to accelerate encoding. Such as h264_nvenc, hevc_nvenc.

out_cpu = ffmpegcv.VideoWriter('outpy.mp4', None, 10)
out_gpu0 = ffmpegcv.VideoWriterNV('outpy.mp4', 'h264', 10)        #NVIDIA GPU0
out_gpu1 = ffmpegcv.VideoWriterNV('outpy.mp4', 'hevc', 10, gpu=1) #NVIDIA GPU1
out_qsv  = ffmpegcv.VideoWriterQSV('outpy.mp4', 'h264', 10)        #Intel QSV, experimental

Input image is rgb24 instead of bgr24

out = ffmpegcv.VideoWriter('outpy.mp4', None, 10, pix_fmt='rgb24')

Resize the video

out_resz = ffmpegcv.VideoWriter('outpy.mp4', None, 10, resize=(640, 480)) #Resize

Video Reader and Writer


import ffmpegcv
vfile_in = 'A.mp4'
vfile_out = 'A_h264.mp4'
vidin = ffmpegcv.VideoCapture(vfile_in)
vidout = ffmpegcv.VideoWriter(vfile_out, None, vidin.fps)

with vidin, vidout:
    for frame in vidin:
        vidout.write(frame)

Camera Reader


Experimental feature. The ffmpegcv offers Camera reader. Which is consistent with VideoFiler reader.

  • The VideoCaptureCAM aims to support ROI operations. The Opencv will be general fascinating than ffmpegcv in camera read. I recommand the opencv in most camera reading case.
  • The ffmpegcv can use name to retrieve the camera device. Use ffmpegcv.VideoCaptureCAM("Integrated Camera") is readable than cv2.VideoCaptureCAM(0).
  • The VideoCaptureCAM will be laggy and dropping frames if your post-process takes long time. The VideoCaptureCAM will buffer the recent frames.
  • The VideoCaptureCAM is continously working on background even if you didn't read it. Please release it in time.
  • Works perfect in Windows, not-perfect in Linux and macOS.
import cv2
cap = cv2.VideoCapture(0)
while True:
    ret, frame = cap.read()
    cv2.imshow('frame', frame)
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break
cap.release()

# ffmpegcv, in Windows&Linux
import ffmpegcv
cap = ffmpegcv.VideoCaptureCAM(0)
while True:
    ret, frame = cap.read()
    cv2.imshow('frame', frame)
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break
cap.release()

# ffmpegcv use by camera name, in Windows&Linux
cap = ffmpegcv.VideoCaptureCAM("Integrated Camera")

# ffmpegcv use camera path if multiple cameras conflict
cap = ffmpegcv.VideoCaptureCAM('@device_pnp_\\\\?\\usb#vid_2304&'
    'pid_oot#media#0001#{65e8773d-8f56-11d0-a3b9-00a0c9223196}'
    '\\global')

# ffmpegcv use camera with ROI operations
cap = ffmpegcv.VideoCaptureCAM("Integrated Camera", crop_xywh=(0, 0, 640, 480), resize=(512, 512), resize_keepratio=True)

List all camera devices

from ffmpegcv.ffmpeg_reader_camera import query_camera_devices

devices = query_camera_devices()
print(devices)

{0: ('Integrated Camera', '@device_pnp_\\?\usb#vid_2304&pid_oot#media#0001#{65e8773d-8f56-11d0-a3b9-00a0c9223196}\global'),
1: ('OBS Virtual Camera', '@device_sw_{860BB310-5D01-11D0-BD3B-00A0C911CE86}\{A3FCE0F5-3493-419F-958A-ABA1250EC20B}')}

Set the camera resolution, fps, vcodec/pixel-format

from ffmpegcv.ffmpeg_reader_camera import query_camera_options

options = query_camera_options(0)  # or query_camera_options("Integrated Camera") 
print(options)
cap = ffmpegcv.VideoCaptureCAM(0, **options[-1])

[{'camcodec': 'mjpeg', 'campix_fmt': None, 'camsize_wh': (1280, 720), 'camfps': 60.0002}, {'camcodec': 'mjpeg', 'campix_fmt': None, 'camsize_wh': (640, 480), 'camfps': 60.0002}, {'camcodec': 'mjpeg', 'campix_fmt': None, 'camsize_wh': (1920, 1080), 'camfps': 60.0002}, {'camcodec': None, 'campix_fmt': 'yuyv422', 'camsize_wh': (1280, 720), 'camfps': 10}, {'camcodec': None, 'campix_fmt': 'yuyv422', 'camsize_wh': (640, 480), 'camfps': 30}, {'camcodec': None, 'campix_fmt': 'yuyv422', 'camsize_wh': (1920, 1080), 'camfps': 5}]

Known issues

  1. The VideoCaptureCAM didn't give a smooth experience in macOS. You must specify all the camera parameters. And the query_camera_options woun't give any suggestion. That's because the ffmpeg cannot list device options using mac native avfoundation.
# The macOS requires full argument.
cap = ffmpegcv.VideoCaptureCAM('FaceTime HD Camera', camsize_wh=(1280,720), camfps=30, campix_fmt='nv12')
  1. The VideoCaptureCAM cann't list the FPS in linux. Because the ffmpeg cound't query the device's FPS using linux native v4l2 module. However, it's just OK to let the FPS empty.

Stream Reader (Live streaming, RTSP IP cameras)

Experimental feature. The ffmpegcv offers Stream reader. Which is consistent with VideoFiler reader, and more similiar to the camera. Becareful when using it.

  • Support RTSP, RTP, RTMP, HTTP, HTTPS streams.
  • The VideoCaptureStream will be laggy and dropping frames if your post-process takes long time. The VideoCaptureCAM will buffer the recent frames.
  • The VideoCaptureStream is continously working on background even if you didn't read it. Please release it in time.
  • Low latency RTSP IP camera reader. Batter than opencv.
  • It's still experimental. Recommand you to use opencv.
# opencv
import cv2
stream_url = 'http://devimages.apple.com.edgekey.net/streaming/examples/bipbop_4x3/gear2/prog_index.m3u8'
cap = cv2.VideoCapture(stream_url, cv2.CAP_FFMPEG)

if not cap.isOpened():
    print('Cannot open the stream')
    exit(-1)

while True:
    ret, frame = cap.read()
    if not ret:
        break
    pass

# ffmpegcv
import ffmpegcv
cap = ffmpegcv.VideoCaptureStream(stream_url)
while True:
    ret, frame = cap.read()
    if not ret:
        break
    pass

# ffmpegcv, IP Camera Low-latency
# e.g. HIK Vision IP Camera, `101` Main camera stream, `102` the second
stream_url = 'rtsp://admin:PASSWD@192.168.1.xxx:8554/Streaming/Channels/102'
cap = ffmpegcv.VideoCaptureStreamRT(stream_url)  # Low latency & recent buffered
cap = ffmpegcv.ReadLiveLast(ffmpegcv.VideoCaptureStreamRT, stream_url) #no buffer
while True:
    ret, frame = cap.read()
    if not ret:
        break
    pass

Noblock

A proxy to automatic prepare frames in backgroud, which does not block when reading&writing current frame (multiprocessing). This make your python program more efficient in CPU usage. Up to 2x boost.

ffmpegcv.VideoCapture(*args) -> ffmpegcv.noblock(ffmpegcv.VideoCapture, *args)

ffmpegcv.VideoWriter(*args) -> ffmpegcv.noblock(ffmpegcv.VideoWriter, *args)

#Proxy any VideoCapture&VideoWriter args and kargs
vid_noblock = ffmpegcv.noblock(ffmpegcv.VideoCapture, vfile, pix_fmt='rbg24')

# this is fast
def cpu_tense(): time.sleep(0.01)
for _ in tqdm.trange(1000):
    ret, img = vid_noblock.read() #current img is already buffered, take no time
    cpu_tense()                   #meanwhile, the next img is buffering in background

# this is slow
vid = ffmpegcv.VideoCapture(vfile, pix_fmt='rbg24')
for _ in tqdm.trange(1000):
    ret, img = vid.read()         #this read will block cpu, take time
    cpu_tense()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ffmpegcv-0.3.14.tar.gz (29.2 kB view details)

Uploaded Source

Built Distribution

ffmpegcv-0.3.14-py3-none-any.whl (31.9 kB view details)

Uploaded Python 3

File details

Details for the file ffmpegcv-0.3.14.tar.gz.

File metadata

  • Download URL: ffmpegcv-0.3.14.tar.gz
  • Upload date:
  • Size: 29.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for ffmpegcv-0.3.14.tar.gz
Algorithm Hash digest
SHA256 31c67a8d3bd51e0963f705fbbbd01bb9fe1c1cfc908057c52ecb8f348d57ea1a
MD5 6516913e0dc085cf8890a5d730fb7db9
BLAKE2b-256 8ebe6140b940521b9eb3d2b8f670897a5fc302609ceeaaeb00818ec179209bf3

See more details on using hashes here.

File details

Details for the file ffmpegcv-0.3.14-py3-none-any.whl.

File metadata

  • Download URL: ffmpegcv-0.3.14-py3-none-any.whl
  • Upload date:
  • Size: 31.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for ffmpegcv-0.3.14-py3-none-any.whl
Algorithm Hash digest
SHA256 f6113dc12cc382061f5d223d6bb1f73e2bdf000671b3166ace54963e1522fb54
MD5 d80d2bc272f475d1c3ed157e55e8e199
BLAKE2b-256 d1eea183fb759c69a64cda0b9cd233914d4667b4b23dd5c37dff82472c83d50b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page