Media I/O with FFmpeg
Project description
Python ffmpegio package aims to bring the full capability of FFmpeg to read, write, and manipulate multimedia data to Python. FFmpeg is an open-source cross-platform multimedia framework, which can handle most of the multimedia formats available today.
Since v0.3.0, ffmpegio Python distribution package has been split into ffmpegio-core and ffmpegio to allow Numpy-independent installation.
Install the full ffmpegio package via pip:
pip install ffmpegio
If numpy.ndarray data I/O is not needed, instead use
pip install ffmpegio-core
Main Features
Pure-Python light-weight package interacting with FFmpeg executable found in the system
Transcode a media file to another in Python
Read, write, filter, and create functions for audio, image, and video data
Context-managing ffmpegio.open to perform stream read/write operations of video and audio
Automatically detect and convert audio & video formats to and from numpy.ndarray properties
Probe media file information
Accepts all FFmpeg options including filter graphs
Supports a user callback whenever FFmpeg updates its progress information file (see -progress FFmpeg option)
Advanced users can gain finer controls of FFmpeg I/O with ffmpegio.ffmpegprocess submodule
More features to follow
Documentation
Visit our GitHub page here
Examples
To import ffmpegio
>>> import ffmpegio
Transcoding
>>> # transcode, overwrite output file if exists, showing the FFmpeg log
>>> ffmpegio.transcode('input.avi', 'output.mp4', overwrite=True, show_log=True)
>>> # 1-pass H.264 transcoding
>>> ffmpegio.transcode('input.avi', 'output.mkv', vcodec='libx264', show_log=True,
>>> preset='slow', crf=22, acodec='copy')
>>> # 2-pass H.264 transcoding
>>> ffmpegio.transcode('input.avi', 'output.mkv', two_pass=True, show_log=True,
>>> **{'c:v':'libx264', 'b:v':'2600k', 'c:a':'aac', 'b:a':'128k'})
Read Audio Files
>>> # read audio samples in its native sample format and return all channels
>>> fs, x = ffmpegio.audio.read('myaudio.wav')
>>> # fs: sampling rate in samples/second, x: [nsamples x nchannels] numpy array
>>> # read audio samples from 24.15 seconds to 63.2 seconds, pre-convert to mono in float data type
>>> fs, x = ffmpegio.audio.read('myaudio.flac', ss=24.15, to=63.2, sample_fmt='dbl', ac=1)
>>> # read filtered audio samples first 10 seconds
>>> # filter: equalizer which attenuate 10 dB at 1 kHz with a bandwidth of 200 Hz
>>> fs, x = ffmpegio.audio.read('myaudio.mp3', t=10.0, af='equalizer=f=1000:t=h:width=200:g=-10')
Read Image Files / Capture Video Frames
>>> # list supported image extensions
>>> ffmpegio.caps.muxer_info('image2')['extensions']
['bmp', 'dpx', 'exr', 'jls', 'jpeg', 'jpg', 'ljpg', 'pam', 'pbm', 'pcx', 'pfm', 'pgm', 'pgmyuv',
'png', 'ppm', 'sgi', 'tga', 'tif', 'tiff', 'jp2', 'j2c', 'j2k', 'xwd', 'sun', 'ras', 'rs', 'im1',
'im8', 'im24', 'sunras', 'xbm', 'xface', 'pix', 'y']
>>> # read BMP image with auto-detected pixel format (rgb24, gray, rgba, or ya8)
>>> I = ffmpegio.image.read('myimage.bmp') # I: [height x width x ncomp] numpy array
>>> # read JPEG image, then convert to grayscale and proportionally scale so the width is 480 pixels
>>> I = ffmpegio.image.read('myimage.jpg', pix_fmt='grayscale', s='480x-1')
>>> # read PNG image with transparency, convert it to plain RGB by filling transparent pixels orange
>>> I = ffmpegio.image.read('myimage.png', pix_fmt='rgb24', fill_color='orange')
>>> # capture video frame at timestamp=4:25.3 and convert non-square pixels to square
>>> I = ffmpegio.image.read('myvideo.mpg', ss='4:25.3', square_pixels='upscale')
>>> # capture 5 video frames and tile them on 3x2 grid with 7px between them, and 2px of initial margin
>>> I = ffmpegio.image.read('myvideo.mp4', vf='tile=3x2:nb_frames=5:padding=7:margin=2')
>>> # create spectrogram of the audio input (must specify pix_fmt if input is audio)
>>> I = ffmpegio.image.read('myaudio.mp3', filter_complex='showspectrumpic=s=960x540', pix_fmt='rgb24')
Read Video Files
>>> # read 50 video frames at t=00:32:40 then convert to grayscale
>>> fs, F = ffmpegio.video.read('myvideo.mp4', ss='00:32:40', vframes=50, pix_fmt='gray')
>>> # fs: frame rate in frames/second, F: [nframes x height x width x ncomp] numpy array
>>> # get running spectrogram of audio input (must specify pix_fmt if input is audio)
>>> fs, F = ffmpegio.video.read('myvideo.mp4', pix_fmt='rgb24', filter_complex='showspectrum=s=1280x480')
Read Multiple Files or Streams
>>> # read both video and audio streams (1 ea)
>>> rates, data = ffmpegio.media.read('mymedia.mp4')
>>> # rates: dict of frame rate and sampling rate: keys="v:0" and "a:0"
>>> # data: dict of video frame array and audio sample array: keys="v:0" and "a:0"
>>> # combine video and audio files
>>> rates, data = ffmpegio.media.read('myvideo.mp4','myaudio.mp3')
>>> # get output of complex filtergraph (can take multiple inputs)
>>> expr = "[v:0]split=2[out0][l1];[l1]edgedetect[out1]"
>>> rates, data = ffmpegio.media.read('myvideo.mp4',filter_complex=expr,map=['[out0]','[out1]'])
>>> # rates: dict of frame rates: keys="v:0" and "v:1"
>>> # data: dict of video frame arrays: keys="v:0" and "v:1"
Write Audio, Image, & Video Files
>>> # create a video file from a numpy array
>>> ffmpegio.video.write('myvideo.mp4', rate, F)
>>> # create an image file from a numpy array
>>> ffmpegio.image.write('myimage.png', F)
>>> # create an audio file from a numpy array
>>> ffmpegio.audio.write('myaudio.mp3', rate, x)
Filter Audio, Image, & Video data
>>> # Add fade-in and fade-out effects to audio data
>>> fs_out, y = ffmpegio.audio.filter('afade=t=in:ss=0:d=15,afade=t=out:st=875:d=25', fs_in, x)
>>> # Apply mirror effect to an image
>>> I_out = ffmpegio.image.filter('crop=iw/2:ih:0:0,split[left][tmp];[tmp]hflip[right];[left][right] hstack', I_in)
>>> # Add text at the center of the video frame
>>> filter = "drawtext=fontsize=30:fontfile=FreeSerif.ttf:text='hello world':x=(w-text_w)/2:y=(h-text_h)/2"
>>> fs_out, F_out = ffmpegio.video.filter(filter, fs_in, F_in)
Stream I/O
>>> # process video 100 frames at a time and save output as a new video
>>> # with the same frame rate
>>> with ffmpegio.open('myvideo.mp4', 'rv', blocksize=100) as fin,
>>> ffmpegio.open('myoutput.mp4', 'wv', rate=fin.frame_rate) as fout:
>>> for frames in fin:
>>> fout.write(myprocess(frames))
Progress callback
>>> import pprint>>> # progress callback >>> def progress(info, done): >>> pprint(info) # bunch of stats >>> if done: >>> print('video decoding completed') >>> else: >>> return check_cancel_command(): # return True to kill immediately>>> # can be used in any butch processing >>> rate, F = ffmpegio.video.read('myvideo.mp4', progress=progress)>>> # as well as for stream processing >>> with ffmpegio.open('myvideo.mp4', 'rv', blocksize=100, progress=progress) as fin: >>> for frames in fin: >>> myprocess(frames)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file ffmpegio-core-0.4.3.tar.gz
.
File metadata
- Download URL: ffmpegio-core-0.4.3.tar.gz
- Upload date:
- Size: 91.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6b9b3d3ab9e80db576298b968a3eebfaeb8cdb64313f64dad5d95660878a3710 |
|
MD5 | 3875d19f9926e0d674eeac15eaaa8336 |
|
BLAKE2b-256 | 484f90d8e92af8e87ea51cfc0bc128d7350c14c3c422f37ef385e65eb088a5f0 |
File details
Details for the file ffmpegio_core-0.4.3-py3-none-any.whl
.
File metadata
- Download URL: ffmpegio_core-0.4.3-py3-none-any.whl
- Upload date:
- Size: 98.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | aaf37d85ed837aae994377408f8929aab40b40567a9d8d379429ee80d4c6c8dd |
|
MD5 | 1fa0c9148b6feaa6eae01f643bc45d21 |
|
BLAKE2b-256 | b40a78d6cb62005a82660ebcc08d2e96e51dcd8f610dcc3b67834bb5e8c00914 |