Implementation of 1D, 2D, and 3D FFT convolutions in PyTorch.
Project description
fft-conv-pytorch
Implementation of 1D, 2D, and 3D FFT convolutions in PyTorch.
- Faster than direct convolution for large kernels.
- Much slower than direct convolution for small kernels.
- In my local tests, FFT convolution is faster when the kernel has >100 or so elements.
- Dependent on machine and PyTorch version.
- Also see benchmarks below.
Install
Using pip
:
pip install fft-conv-pytorch
From source:
git clone https://github.com/fkodom/fft-conv-pytorch.git
cd fft-conv-pytorch
pip install .
Example Usage
import torch
from fft_conv_pytorch import fft_conv, FFTConv1d
# Create dummy data.
# Data shape: (batch, channels, length)
# Kernel shape: (out_channels, in_channels, kernel_size)
# Bias shape: (out channels, )
# For ordinary 1D convolution, simply set batch=1.
signal = torch.randn(3, 3, 1024 * 1024)
kernel = torch.randn(2, 3, 128)
bias = torch.randn(2)
# Functional execution. (Easiest for generic use cases.)
out = fft_conv(signal, kernel, bias=bias)
# Object-oriented execution. (Requires some extra work, since the
# defined classes were designed for use in neural networks.)
fft_conv = FFTConv1d(3, 2, 128, bias=True)
fft_conv.weight = torch.nn.Parameter(kernel)
fft_conv.bias = torch.nn.Parameter(bias)
out = fft_conv(signal)
Benchmarks
Benchmarking FFT convolution against the direct convolution from PyTorch in 1D, 2D, and 3D. The exact times are heavily dependent on your local machine, but relative scaling with kernel size is always the same.
Dimensions | Input Size | Input Channels | Output Channels | Bias | Padding | Stride | Dilation |
---|---|---|---|---|---|---|---|
1 | (4096) | 4 | 4 | True | 0 | 1 | 1 |
2 | (512, 512) | 4 | 4 | True | 0 | 1 | 1 |
3 | (64, 64, 64) | 4 | 4 | True | 0 | 1 | 1 |
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file fft-conv-pytorch-1.2.0.tar.gz
.
File metadata
- Download URL: fft-conv-pytorch-1.2.0.tar.gz
- Upload date:
- Size: 7.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9a061383176fa72cb2d8815d0c9ae67d03f7f1cea182ec9b9f5e869168582adb |
|
MD5 | b8ced2dffb509ecdc3b471c13b5cd80a |
|
BLAKE2b-256 | e233bebb4a0c01aa18513331b6a19d1a100b5762ce3678fefae862d2f12673e6 |
File details
Details for the file fft_conv_pytorch-1.2.0-py3-none-any.whl
.
File metadata
- Download URL: fft_conv_pytorch-1.2.0-py3-none-any.whl
- Upload date:
- Size: 6.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 17b9bd616df86da25e4820473698eb4831c2f2f6e73906961901e6c278098f3c |
|
MD5 | ba0fc479a5e48d29d372ed0d1d62c2f8 |
|
BLAKE2b-256 | 3496bbbf3761c6969defddb3c3268e2ab1a0524a7a16378afbdf06985cccce26 |