Gymnasium framework for training language model agents on constructive tasks
Project description
aviary
Gymnasium framework for training language model agents on constructive tasks.
Installation
To install aviary:
pip install -e .
To install aviary and the provided environments:
pip install -e . -e packages/gsm8k -e packages/hotpotqa
To run test suites you will need to set the OPENAI_API_KEY
and ANTHROPIC_API_KEY
environment variables. In ~/.bashrc
you can add:
export OPENAI_API_KEY=your_openai_api_key
export ANTHROPIC_API_KEY=your_anthropic_api_key
Messages
Communication between the agent and environment is done through messages. Messages have two attributes:
msg = Message(content="Hello, world!", role="assistant")
For the meaning of role, see the table below.
You can change around roles as desired,
except for tool
which has a special meaning in aviary.
Role | Host | Example |
---|---|---|
assistant | AI | ChatGPT |
system | AI system prompt | You are an AI assistant |
user | User | You, using ChatGPT |
tool | Tool in the environment | Some custom number crunching program |
The content
is a string that can be anything, or a null value.
Environment
An environment should have two functions:
obs_msgs, tools = await env.reset()
new_obs_msgs, reward, done, truncated = await env.step(action_msg)
where messages are how communication is passed. The action_msg
should be ToolRequestMessage
which is 1 or more calls
to tools provided by the reset
. The obs_msgs
returned from the environment are ToolResponseMessage
or other
general messages that are observations. The reward
is a scalar value. The done
is a boolean value. The truncated
is a boolean value.
Let's see a complete example for building an environment.
Environment subclass and state
First we define an environment by subclassing the Environment
and defining a state
. The state
is all variables
that change per step and we want to keep together. It will be accessible in your tools, so you can use it to store
information that you want to persist between steps and between tools.
from pydantic import BaseModel
from aviary.env import Environment
class ExampleState(BaseModel):
reward: float = 0
done: bool = False
class ExampleEnv(Environment[ExampleState]):
state: ExampleState
We do not have other variables aside from state
for this environment. We could have things like configuration, a name,
tasks, etc. attached to it.
Common environments
We expose a simple interface to some commonly-used environments that are included in the aviary codebase. You can instantiate one by referring to its name and passing keyword arguments:
from aviary.env import Environment
env = Environment.from_name(
"calculator",
problem_id="example-problem",
problem="What is 2+3?",
answer=5,
)
Included with some environments are collections of problems that define training or evaluation datasets.
We refer to these as TaskDataset
s, and expose them with a similar interface:
from aviary.env import TaskDataset
dataset = TaskDataset.from_name("hotpotqa", split="dev")
Tool
Now let's define our functions that will make up our tools. We'll just have one tool. Tools can optionally have their
last argument be state
which is the environment state. This is how you can access the state. This argument will not be
exposed to the agent as a possible parameter and will be injected by the environment (if part of the function
signature).
def print_story(story: str, state: ExampleState) -> None:
"""Print a story.
Args:
story: Story to print.
state: Environment state (hidden from agent - can put this string to shutup linter).
"""
print(story)
state.reward = 1
state.done = True
There is special syntax we use for defining a tool. The tool is built from the following parts of the function: its name, its arguments names, the arguments types, and the docstring. The docstring is parsed to get a description of the function and its arguments, so match the syntax carefully.
Setting the state.done = True
is how we indicate completion. This example terminates immediately. You can use other
ways to decide to terminate.
You can make the function async
- the environment will account for that when the tool is called.
Advanced tool descriptions
We support more sophisticated signatures, for those who want to use them:
- Multiline docstrings
- Non-primitive type hints (e.g. type unions)
- Default values
- Exclusion of info below
\f
(see below)
If you have summary-level information that belongs in the docstring,
but you don't want it part of the Tool.info.description
,
add a r
prefix to the docstring
and inject \f
before the summary information to exclude.
This convention was created by FastAPI (docs).
def print_story(story: str | bytes, state: ExampleState) -> None:
r"""Print a story.
Extra information that is part of the tool description.
\f
This sentence is excluded because it's an implementation detail.
Args:
story: Story to print, either as a string or bytes.
state: Environment state.
"""
print(story)
state.reward = 1
state.done = True
Environment reset
method
Now we'll define the reset
function which should set-up the tools and return one or more observations and the tools.
from aviary.message import Message
from aviary.tools import Tool
def reset(self) -> tuple[list[Message], list[Tool]]:
self.tools = [Tool.from_function(ExampleEnv.print_story)]
start = Message(content="Write a 5 word story and call print")
return [start], self.tools
Environment step
method
Now we can define the step
function which should take an action and return the next observation, reward, done, and if
the episode was truncated.
from aviary.message import Message
async def step(self, action: Message) -> tuple[list[Message], float, bool, bool]:
msgs: list[Message] = await self.exec_tool_calls(action, state=self.state)
return msgs, self.state.reward, self.state.done, False
You will probably often use this specific syntax for calling the tools - calling exec_tool_calls
with the action.
Environment export_frame
method
Lastly, we can define a function to export the state for visualization or debugging purposes. This is optional.
from aviary.env import Frame
def export_frame(self) -> Frame:
return Frame(
state={"done": self.state.done, "reward": self.state.reward},
info={"tool_names": [t.info.name for t in self.tools]},
)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file fhaviary-0.4.0.tar.gz
.
File metadata
- Download URL: fhaviary-0.4.0.tar.gz
- Upload date:
- Size: 133.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5686f0aaf2d9d4ad711ef46edf288af48ba322e8e4fdf4cf53eeff42c9f8230d |
|
MD5 | e02a8217d05b547a3b9957cb7cceab19 |
|
BLAKE2b-256 | acc5c5aa412f7990f7dbbd1d71428006b01cc5e63e4162dd784802d7749c7713 |
File details
Details for the file fhaviary-0.4.0-py3-none-any.whl
.
File metadata
- Download URL: fhaviary-0.4.0-py3-none-any.whl
- Upload date:
- Size: 26.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 263a53267c8df33238ea60386d7297fef6ca3eb14e9188c886295566e84f85b5 |
|
MD5 | 5af6b0237cd579e528d74133403b05db |
|
BLAKE2b-256 | 06eb4345c2737f93833db551e13747beaf108d821fcddf49c1aa7fcf132529f8 |