Skip to main content

fib-o-mat is a toolbox to generate patterns for focused ion beam instruments.

Project description

fibomat logo

fib-o-mat is a Python library to create beam patterns for focused ion beam instruments.

Pattern geometries can be modeled directly in Python bsaed on (pre-)defined geometric primitives or importet from vector graphics. These can be equipped with beam and rasterizing settings and exported to microscope compatible files.

fib-o-mat is by designed flexible and easily expandable. Hence, adding support for for different microscopes, custom geometric primitives or optimization routines is a straightforward process.

For the usage of fib-o-mat, basic python knowledge and a good understanding of the target microscope are mandatory. See the getting started guide for an introduction to this library and the user guide for a complete documentation. The module reference is to be found here.

workflow

Made with :black_heart: and :coffee: at HZB and FBH in Berlin.

If you use this library in your work, please cite

Deinhart et al., ...

Installation

Run in a terminal

$ pip install fibomat

It is highly recommended to use virtual environments.

Example

from fibomat import Sample, Mill, Q_, U_
from fibomat.shapes import Line
from fibomat import raster_styles
from fibomat.default_backends import SpotListBackend

# create a Sample class object with optional description
sample = Sample('Useful description here')

# add a site to the sample with cente = (0, 0) and field of view of (10, 10)
site = sample.create_site(dim_position=([0, 0], U_('µm')), dim_fov=([10, 10], U_('µm')))  # '%*µm*)'

# create a Pattern with a Line shape and add it to the site
site.create_pattern(
    dim_shape=(Line((-5, 0), (5, 0)), U_('µm')),
    shape_mill=Mill(dwell_time=Q_('5 ms'), repeats=1),
    raster_style=raster_styles.one_d.Linear(pitch=Q_('1 nm'))
)

# export a rasterized version of the pattern as text file in a pre-defined (but editable) format. See docs for details.
sample.export(SpotListBackend).save('pattern.txt')

# plot the pattern
sample.plot()

License

The source code is licensed under the GNU General Public License v3.0. This includes everything besides the 'docs' folder and its content in the git repository. See LICENSE.txt for a copy of the license.

The documentation is licensed under the Creative Commons Attribution 4.0 International. This includes everything in the 'docs' folder in the git repository and the documentation hosted at https://fib-o-mat.readthedocs.io/. A copy of the license is to be found at 'docs/LICENSE_DOCS.txt' in the git repository.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fibomat-0.4.0.tar.gz (6.7 MB view details)

Uploaded Source

Built Distributions

fibomat-0.4.0-cp312-cp312-win_amd64.whl (3.8 MB view details)

Uploaded CPython 3.12 Windows x86-64

fibomat-0.4.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (378.1 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

fibomat-0.4.0-cp312-cp312-macosx_10_9_x86_64.whl (373.4 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

fibomat-0.4.0-cp311-cp311-win_amd64.whl (3.8 MB view details)

Uploaded CPython 3.11 Windows x86-64

fibomat-0.4.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (378.0 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

fibomat-0.4.0-cp311-cp311-macosx_10_9_x86_64.whl (375.1 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

fibomat-0.4.0-cp310-cp310-win_amd64.whl (3.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

fibomat-0.4.0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (377.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

fibomat-0.4.0-cp310-cp310-macosx_10_9_x86_64.whl (373.6 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

fibomat-0.4.0-cp39-cp39-win_amd64.whl (3.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

fibomat-0.4.0-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (377.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

fibomat-0.4.0-cp39-cp39-macosx_10_9_x86_64.whl (373.8 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file fibomat-0.4.0.tar.gz.

File metadata

  • Download URL: fibomat-0.4.0.tar.gz
  • Upload date:
  • Size: 6.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for fibomat-0.4.0.tar.gz
Algorithm Hash digest
SHA256 aa4fc49092404585d0dd32b922dfe41ff4043718b89d15c15b2c44f648ba0dda
MD5 28f7e9cb135ba2232fb234bd47e20b3a
BLAKE2b-256 25553091341765e8e865f0f41262bc2b65db2d67e0a4c45717f302f74481fe1b

See more details on using hashes here.

File details

Details for the file fibomat-0.4.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: fibomat-0.4.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 3.8 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for fibomat-0.4.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 aeeb1ab315c1d988f5bfcffa198908e0648883ad043b3e4a8abc12812d992fa3
MD5 b1512c6f012f8723abe46642549d9ccc
BLAKE2b-256 347d7525d4a6459522220ee6ba58ac0128a336633275dfc93cde71df36d8e141

See more details on using hashes here.

File details

Details for the file fibomat-0.4.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for fibomat-0.4.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 495a75a30b1b3dc852f3f1ba7d7c04ef8aa338b31ffca4b8324a10b070c8faf7
MD5 8f7cf76898935897fa43a5ff20213253
BLAKE2b-256 8bb98c27592cfe105528ee9077e050a2a749fcfee0e6e656cfd066677a75cf8d

See more details on using hashes here.

File details

Details for the file fibomat-0.4.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fibomat-0.4.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c9a107eb589665f5bb98a4b984240daeb69072f9f2c19b7038e357e58617210c
MD5 39e5ed5f71f6fc0a642d271de80f9de0
BLAKE2b-256 05707e788644662837d8e52c95e6c2c4c7f5a7106a36ec4ab29e26f9bbb4acd7

See more details on using hashes here.

File details

Details for the file fibomat-0.4.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: fibomat-0.4.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 3.8 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for fibomat-0.4.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 c9682abb30740586f79f3abcedcc1b3848c804a5609495b62cd433ac9b94c250
MD5 5709043696f73e27ebabefc347a23a57
BLAKE2b-256 fb3fa1f3ce7ee618cc96d85fe4eb95662c06711acee92225cea7f7fca9cfa5b7

See more details on using hashes here.

File details

Details for the file fibomat-0.4.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for fibomat-0.4.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 83f6fe51085f2ddae3b2acde7581bf91762a6e79aeb58d0943d1f1d841d7e9db
MD5 61cc43ac2e3b4b029413f204cab720d3
BLAKE2b-256 66ed699c281b3301f96f538a0e62c08bf079b4ca303f4e7d8003d55feb47be6e

See more details on using hashes here.

File details

Details for the file fibomat-0.4.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fibomat-0.4.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 23e639a9f42a37ec0e22426ad27437b692d827e297fad497d2a356b100c4b796
MD5 4db3f350e363bc2eebdf45d33cbeadba
BLAKE2b-256 2105e3de4992862df0db1019869a55ce9edaba782a191f5820fabaad4ab03387

See more details on using hashes here.

File details

Details for the file fibomat-0.4.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: fibomat-0.4.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 3.8 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for fibomat-0.4.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 7280a308c8ea08309c7bf606002c18544f8db88d42f59ded5a420c79808b3108
MD5 3b85f344aace9f48481a0ed3a3a282e7
BLAKE2b-256 df7e31598d48730184bdd3fd632da9daf03cfd1ca4d27537f43fdf5dfc342b94

See more details on using hashes here.

File details

Details for the file fibomat-0.4.0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for fibomat-0.4.0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 f621fb015267d7640071162f7740bd45213eda5baea8b0ed90e61b80c3b33057
MD5 2f7f26802e5c1f373e329acc956f32af
BLAKE2b-256 99c6a5aa3542400c3f1ff556b95a3442f85eca4bbcb521799739bd2bc576b9bb

See more details on using hashes here.

File details

Details for the file fibomat-0.4.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fibomat-0.4.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c2b9703185957e2c384eaa53cd5be2c93b568319a5ad9640c470c4e652a30cfb
MD5 bb4ddee34f4e127b7397b06458048206
BLAKE2b-256 75f8978e67eb91eeb6161462f07c50e49392c65eccde4e8a99d2cfd19f5b25d4

See more details on using hashes here.

File details

Details for the file fibomat-0.4.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: fibomat-0.4.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 3.8 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for fibomat-0.4.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 b4d5883cef13c6e75cba7134de1d887881811df1c2c1121bc4b7c09e22d031c4
MD5 0a919354399706884f9916a7645b73dc
BLAKE2b-256 57ebe2d3c5fee947481611eb18dc03d4b69dd17c8ffd07dda6e288772998f204

See more details on using hashes here.

File details

Details for the file fibomat-0.4.0-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for fibomat-0.4.0-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 67cf20579244ba1a5ca5e2ffc0c1a8ef024940d7071b9c9f06e7ed2eb502665b
MD5 18721f26c9c4c6bf3156576b9a91f403
BLAKE2b-256 ddea66dd0852c2de5914a599fc7f14b27be3f8b1de4f45f17038e24f6828b898

See more details on using hashes here.

File details

Details for the file fibomat-0.4.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fibomat-0.4.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e60f294e9856220290d790d68900065a1de9d85f3ffde52dd0122395e4b332ce
MD5 5bf21dcc6cf8217ffec31ab2648a0cbf
BLAKE2b-256 e899042770047d14afc9280507f46bcda8b4fabf9f87041b1b574ba162112f74

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page