Skip to main content

Tools for processing FIBSEM datasets

Project description

FIB-SEM Tools

Tools for processing FIB-SEM data and annotations generated at Janelia Research Campus

Installation

This package is currently distributed via pip. We are probably going to put it on conda eventually.

pip install fibsem_tools

Usage

The bulk of this libary is a collection of python functions that provide a uniform interface to a variety of file + metadata formats used for storing FIB-SEM datasets. The following file formats are supported:

Format Access mode Storage backend
n5 r/w local, s3, gcs (via fsspec)
zarr r/w local, s3, gcs (via fsspec)
hdf5 r local
mrc r local
dat r local

Because physical coordinates and metadata are extremely important for imaging data, this library uses the DataArray datastructure from xarray to represent FIB-SEM data as arrays with spatial coordinates + metadata. E.g.,

>>> from fibsem_tools import read_xarray, read
>>> from rich import print # pretty printing
>>> creds = {'anon': True} # anonymous credentials for s3
>>> group_url = 's3://janelia-cosem-datasets/jrc_sum159-1/jrc_sum159-1.n5/em/fibsem-uint16/' # path to a group of arrays on s3
>>> group = read(url, storage_options=creds) # this returns a zarr group, which in this case is a collection of arrays
>>> print(tuple(group.arrays())) # this shows all the arrays in the group
(
    ('s0', <zarr.core.Array '/em/fibsem-uint16/s0' (7632, 2800, 16000) uint16 read-only>),
    ('s1', <zarr.core.Array '/em/fibsem-uint16/s1' (3816, 1400, 8000) uint16 read-only>),
    ('s2', <zarr.core.Array '/em/fibsem-uint16/s2' (1908, 700, 4000) uint16 read-only>),
    ('s3', <zarr.core.Array '/em/fibsem-uint16/s3' (954, 350, 2000) uint16 read-only>),
    ('s4', <zarr.core.Array '/em/fibsem-uint16/s4' (477, 175, 1000) uint16 read-only>),
    ('s5', <zarr.core.Array '/em/fibsem-uint16/s5' (239, 88, 500) uint16 read-only>)
)
>>> tree = read_xarray(url, storage_options=creds) # read the group as a DataTree, a collection of xarray objects
>>> print(tree)
DataTree('fibsem-uint16', parent=None)
   Dimensions:  ()
   Data variables:
       *empty*
   Attributes:
       axes:             ['x', 'y', 'z']
       multiscales:      [{'datasets': [{'path': 's0', 'transform': {'axes': ['z...
       pixelResolution:  {'dimensions': [4.0, 4.0, 4.56], 'unit': 'nm'}
       scales:           [[1, 1, 1], [2, 2, 2], [4, 4, 4], [8, 8, 8], [16, 16, 1...
       units:            ['nm', 'nm', 'nm']
├── DataTree('s0')
       Dimensions:  (z: 7632, y: 2800, x: 16000)
       Coordinates:
         * z        (z) float64 0.0 4.56 9.12 13.68 ... 3.479e+04 3.479e+04 3.48e+04
         * y        (y) float64 0.0 4.0 8.0 12.0 ... 1.119e+04 1.119e+04 1.12e+04
         * x        (x) float64 0.0 4.0 8.0 12.0 ... 6.399e+04 6.399e+04 6.4e+04
       Data variables:
           data     (z, y, x) uint16 dask.array<chunksize=(384, 384, 384), meta=np.ndarray>
├── DataTree('s1')
       Dimensions:  (z: 3816, y: 1400, x: 8000)
       Coordinates:
         * z        (z) float64 2.28 11.4 20.52 29.64 ... 3.478e+04 3.479e+04 3.48e+04
         * y        (y) float64 2.0 10.0 18.0 26.0 ... 1.118e+04 1.119e+04 1.119e+04
         * x        (x) float64 2.0 10.0 18.0 26.0 ... 6.398e+04 6.399e+04 6.399e+04
       Data variables:
           data     (z, y, x) uint16 dask.array<chunksize=(384, 384, 384), meta=np.ndarray>
├── DataTree('s2')
       Dimensions:  (z: 1908, y: 700, x: 4000)
       Coordinates:
         * z        (z) float64 6.84 25.08 43.32 ... 3.475e+04 3.477e+04 3.479e+04
         * y        (y) float64 6.0 22.0 38.0 54.0 ... 1.116e+04 1.117e+04 1.119e+04
         * x        (x) float64 6.0 22.0 38.0 54.0 ... 6.396e+04 6.397e+04 6.399e+04
       Data variables:
           data     (z, y, x) uint16 dask.array<chunksize=(384, 384, 384), meta=np.ndarray>
├── DataTree('s3')
       Dimensions:  (z: 954, y: 350, x: 2000)
       Coordinates:
         * z        (z) float64 15.96 52.44 88.92 ... 3.471e+04 3.474e+04 3.478e+04
         * y        (y) float64 14.0 46.0 78.0 110.0 ... 1.112e+04 1.115e+04 1.118e+04
         * x        (x) float64 14.0 46.0 78.0 110.0 ... 6.392e+04 6.395e+04 6.398e+04
       Data variables:
           data     (z, y, x) uint16 dask.array<chunksize=(288, 350, 576), meta=np.ndarray>
├── DataTree('s4')
       Dimensions:  (z: 477, y: 175, x: 1000)
       Coordinates:
         * z        (z) float64 34.2 107.2 180.1 ... 3.462e+04 3.469e+04 3.476e+04
         * y        (y) float64 30.0 94.0 158.0 222.0 ... 1.104e+04 1.11e+04 1.117e+04
         * x        (x) float64 30.0 94.0 158.0 222.0 ... 6.384e+04 6.39e+04 6.397e+04
       Data variables:
           data     (z, y, x) uint16 dask.array<chunksize=(384, 175, 864), meta=np.ndarray>
└── DataTree('s5')
        Dimensions:  (z: 239, y: 88, x: 500)
        Coordinates:
          * z        (z) float64 70.68 216.6 362.5 ... 3.451e+04 3.465e+04 3.48e+04
          * y        (y) float64 62.0 190.0 318.0 446.0 ... 1.094e+04 1.107e+04 1.12e+04
          * x        (x) float64 62.0 190.0 318.0 ... 6.368e+04 6.381e+04 6.393e+04
        Data variables:
            data     (z, y, x) uint16 dask.array<chunksize=(239, 88, 500), meta=np.ndarray>

>>> array = read_xarray(url + '/s0', storage_options=creds) # get one of the arrays as a dataarray
>>> print(array)
<xarray.DataArray 's0' (z: 7632, y: 2800, x: 16000)>
dask.array<s0, shape=(7632, 2800, 16000), dtype=uint16, chunksize=(384, 384, 384), chunktype=numpy.ndarray>
Coordinates:
  * z        (z) float64 0.0 4.56 9.12 13.68 ... 3.479e+04 3.479e+04 3.48e+04
  * y        (y) float64 0.0 4.0 8.0 12.0 ... 1.119e+04 1.119e+04 1.12e+04
  * x        (x) float64 0.0 4.0 8.0 12.0 ... 6.399e+04 6.399e+04 6.4e+04
Attributes:
    pixelResolution:  {'dimensions': [4.0, 4.0, 4.56], 'unit': 'nm'}
    transform:        {'axes': ['z', 'y', 'x'], 'scale': [4.56, 4.0, 4.0], 't...

To get the data as a numpy array (this will download all the chunks from s3, so be careful):

>>> array = result.compute().data

Development

Clone the repo:

git clone https://github.com/janelia-cosem/fibsem-tools.git

Install poetry, e.g. via pipx.

Then install dependencies

cd fibsem_tools
poetry install

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fibsem_tools-7.0.3.tar.gz (49.4 kB view details)

Uploaded Source

Built Distribution

fibsem_tools-7.0.3-py3-none-any.whl (46.0 kB view details)

Uploaded Python 3

File details

Details for the file fibsem_tools-7.0.3.tar.gz.

File metadata

  • Download URL: fibsem_tools-7.0.3.tar.gz
  • Upload date:
  • Size: 49.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-httpx/0.26.0

File hashes

Hashes for fibsem_tools-7.0.3.tar.gz
Algorithm Hash digest
SHA256 abcbf5cafa2831e0a5c3f9666badee5dfc36096396fafab9b38bb73bb52ee945
MD5 f262d2e0d339d32124bc2fcaa70354e8
BLAKE2b-256 7ae56c9444c17c0ed21342bee59365fb90b2561b646da658137ab83700d54de4

See more details on using hashes here.

File details

Details for the file fibsem_tools-7.0.3-py3-none-any.whl.

File metadata

File hashes

Hashes for fibsem_tools-7.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 d90ebac419ef65a96be4635e9d697b80398c355d665e3feb91e5c497d4c576d9
MD5 9f37799889d4c4bef5fdf1107e081ace
BLAKE2b-256 2ba102d46a4456dc2bc77e6aa8ff2537e20da33966172cc26eba8d3ddcaf4fb3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page