Skip to main content

Python implementation of the Forecasting Inundation Extents using REOF method

Project description

fierpy

Python implementation of the Forecasting Inundation Extents using REOF method

Based off of the methods from Chang et al., 2020

Installation

$ conda create -n fier -c conda-forge python=3.8 netcdf4 qt pyqt rioxarray numpy scipy xarray pandas scikit-learn eofs geoglows

$ conda activate fier

$ pip install git+https://github.com/servir/fierpy.git

To Install in OpenSARlab:

$ conda create --prefix /home/jovyan/.local/envs/fier python=3.8 netcdf4 qt pyqt rioxarray numpy scipy xarray pandas scikit-learn eofs geoglows jupyter kernda

$ conda activate fier

$ pip install git+https://github.com/servir/fierpy.git

$ /home/jovyan/.local/envs/fier/bin/python -m ipykernel install --user --name fier

$ conda run -n fier kernda /home/jovyan/.local/share/jupyter/kernels/fier/kernel.json --env-dir /home/jovyan/.local/envs/fier -o

Requirements

  • numpy
  • xarray
  • pandas
  • eofs
  • geoglows
  • scikit-learn
  • rasterio

Example use

import xarray as xr
import fierpy

# read sentinel1 time series imagery
ds = xr.open_dataset("sentine1.nc")

# apply rotated eof process
reof_ds = fierpy.reof(ds.VV,n_modes=4)

# get streamflow data from GeoGLOWS
# select the days we have observations
lat,lon = 11.7122,104.9653
q = fierpy.get_streamflow(lat,lon)
q_sel = fierpy.match_dates(q,ds.time)

# apply polynomial to different modes to find best stats
fit_test = fierpy.find_fits(reof_ds,q_sel,ds)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fierpy-0.0.4.tar.gz (7.1 kB view details)

Uploaded Source

Built Distribution

fierpy-0.0.4-py3-none-any.whl (7.2 kB view details)

Uploaded Python 3

File details

Details for the file fierpy-0.0.4.tar.gz.

File metadata

  • Download URL: fierpy-0.0.4.tar.gz
  • Upload date:
  • Size: 7.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for fierpy-0.0.4.tar.gz
Algorithm Hash digest
SHA256 4ea5d5ecc509ca7fa5e8d5bb1d380bdedd922227b32a19ff343a36a3ec03a653
MD5 a478bd1617e0080e0abcd7988fbb40cd
BLAKE2b-256 2678bed3bf95898a612bc94d5f5e6e9c781632d982650bf32c1ec933e7b95894

See more details on using hashes here.

File details

Details for the file fierpy-0.0.4-py3-none-any.whl.

File metadata

  • Download URL: fierpy-0.0.4-py3-none-any.whl
  • Upload date:
  • Size: 7.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for fierpy-0.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 0a2857f15eac3d7c52c84c1c9d423eeb3c10debc36f63756d4b0b77cd30a79b5
MD5 17d997d33cac551d19717b7837e64bd9
BLAKE2b-256 86415d19da1e9a52c252c0d0fc666e24ab1fb2865c66fcb99915f1b1d881f9df

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page