Python implementation of the Forecasting Inundation Extents using REOF method
Project description
fierpy
Python implementation of the Forecasting Inundation Extents using REOF method
Based off of the methods from Chang et al., 2020
Installation
$ conda create -n fier -c conda-forge python=3.8 netcdf4 qt pyqt rioxarray numpy scipy xarray pandas scikit-learn eofs geoglows
$ conda activate fier
$ pip install git+https://github.com/servir/fierpy.git
To Install in OpenSARlab:
$ conda create --prefix /home/jovyan/.local/envs/fier python=3.8 netcdf4 qt pyqt rioxarray numpy scipy xarray pandas scikit-learn eofs geoglows jupyter kernda
$ conda activate fier
$ pip install git+https://github.com/servir/fierpy.git
$ /home/jovyan/.local/envs/fier/bin/python -m ipykernel install --user --name fier
$ conda run -n fier kernda /home/jovyan/.local/share/jupyter/kernels/fier/kernel.json --env-dir /home/jovyan/.local/envs/fier -o
Requirements
- numpy
- xarray
- pandas
- eofs
- geoglows
- scikit-learn
- rasterio
Example use
import xarray as xr
import fierpy
# read sentinel1 time series imagery
ds = xr.open_dataset("sentine1.nc")
# apply rotated eof process
reof_ds = fierpy.reof(ds.VV,n_modes=4)
# get streamflow data from GeoGLOWS
# select the days we have observations
lat,lon = 11.7122,104.9653
q = fierpy.get_streamflow(lat,lon)
q_sel = fierpy.match_dates(q,ds.time)
# apply polynomial to different modes to find best stats
fit_test = fierpy.find_fits(reof_ds,q_sel,ds)
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
fierpy-0.0.4.tar.gz
(7.1 kB
view hashes)
Built Distribution
fierpy-0.0.4-py3-none-any.whl
(7.2 kB
view hashes)