Skip to main content

Figurenerkennung for German literary texts

Project description

Figurenerkennung for German literary texts

Build Status DOI

An important step in the quantitative analysis of narrative texts is the automatic recognition of references to figures, a special case of the generic NLP problem of Named Entity Recognition (NER).

Usually NER models are not designed for literary texts resulting in poor recall. This easy-to-use package is the continuation of the work of Jannidis et al. using techniques from the field of Deep Learning.

Installation

$ pip install figur

Example

>>> import figur
>>> text = "Der Gärtner entfernte sich eilig, und Eduard folgte bald."
>>> figur.tag(text)
   SentenceId      Token      Tag
0           0        Der        _
1           0    Gärtner  AppTdfW
2           0  entfernte        _
3           0       sich     Pron
4           0     eilig,        _
5           0        und        _
6           0     Eduard     Core
7           0     folgte        _
8           0      bald.        _

Figurenerkennung statistics

Confusion Matrix

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

figur-0.0.8.tar.gz (3.9 kB view details)

Uploaded Source

File details

Details for the file figur-0.0.8.tar.gz.

File metadata

  • Download URL: figur-0.0.8.tar.gz
  • Upload date:
  • Size: 3.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.2

File hashes

Hashes for figur-0.0.8.tar.gz
Algorithm Hash digest
SHA256 1e19db8de8c675e916b1e12a48f902310e4a59e150df8f5efc5ac84c90f2d8eb
MD5 ef397e117bf952f1831b2276b1df997c
BLAKE2b-256 1ac3a12effc124d2b866515b3fa292975145628cb3fdb521e47120e086a7e82e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page