Skip to main content

Solar Filaments data augmentation demo package

Project description

Torch Compatible Augmentation Engine For Solar Filaments v0.0.1

An ML-Ready Filament Augmentation Toolkit with Labeled Magnetic Helicity Sign

ABSTRACT

A halo Coronal Mass Ejection can have a devastating impact on Earth by causing damage to satellites and electrical transmission line facilities and disrupting radio transmissions. To predict the orientation of the magnetic field (and therefore the occurrence of a geomagnetic storm) associated with an occurring CME, filaments' sign of magnetic helicity can be used. This would allow us to predict a geomagnetic storm.

With the deluge of image data produced by ground-based and space-borne observatories and the unprecedented success of computer vision algorithms in detecting and classifying objects (events) on images, identification of filaments' chirality appears to be a well-fitted problem in this domain. To be more specific, Deep Learning algorithms with a Convolutional Neural Network (CNN) backbone are made to attack this very type of problem. The only challenge is that these supervised algorithms are data-hungry; their large number of model parameters demand millions of labeled instances to learn. Datasets of filaments with manually identified chirality, however, are costly to be built. This scarcity exists primarily because of the tedious task of data annotation, especially that identification of filaments' chirality requires domain expertise. In response, we created a pipeline for the augmentation of filaments based on the existing and labeled instances. This Python toolkit provides a resource of unlimited augmented (new) filaments with labeled magnetic helicity signs. Using an existing dataset of H-alpha based manually-labeled filaments as input seeds, collected from August 2000 to 2016 from the big bear solar observatory (BBSO) full-disk solar images, we augment new filament instances by passing labeled filaments through a pipeline of chirality-preserving transformation functions. This augmentation engine is fully compatible with PyTorch, a popular library for deep learning and generates the data based on users requirement.

Requirements

Linux/Mac/Windows OS: Installation


pip install augmentation_engine
Requirement already satisfied: augmentation_engine in d:\gsu_assignments\semester_2\dl\augmentation_engine (0.0.1)
Requirement already satisfied: sortedcontainers in c:\users\shreejaa talla\pycharmprojects\bbso_fa\venv\lib\site-packages (from augmentation_engine) (2.4.0)
Requirement already satisfied: opencv_python in c:\users\shreejaa talla\pycharmprojects\bbso_fa\venv\lib\site-packages (from augmentation_engine) (4.5.3.56)
Requirement already satisfied: torchvision in c:\users\shreejaa talla\pycharmprojects\bbso_fa\venv\lib\site-packages (from augmentation_engine) (0.10.0)
Requirement already satisfied: pillow in c:\users\shreejaa talla\pycharmprojects\bbso_fa\venv\lib\site-packages (from augmentation_engine) (8.3.2)
Requirement already satisfied: numpy>=1.17.3 in c:\users\shreejaa talla\pycharmprojects\bbso_fa\venv\lib\site-packages (from opencv_python->augmentation_engine) (1.21.2)
Requirement already satisfied: torch==1.9.0 in c:\users\shreejaa talla\pycharmprojects\bbso_fa\venv\lib\site-packages (from torchvision->augmentation_engine) (1.9.0)
Requirement already satisfied: typing-extensions in c:\users\shreejaa talla\pycharmprojects\bbso_fa\venv\lib\site-packages (from torch==1.9.0->torchvision->augmentation_engine) (3.10.0.2)
Note: you may need to restart the kernel to use updated packages.

Import Required Libraries

import os
from torchvision import transforms
import matplotlib.pyplot as plt

from filament_augmentation.loader.filament_dataloader import FilamentDataLoader
from filament_augmentation.generator.filament_dataset import FilamentDataset
from filament_augmentation.metadata.filament_metadata import FilamentMetadata

To find out the number of left, right and unidentified chiralities for an interval of time.

  • The code snippet below gives the chirality distribution, i.e., the distribution of left, right and unidentified chiralities for an interval of time from "2015-08-01 17:36:15" to "2015-08-09 18:15:17".
  • Here the petdata has big bear space observatory(BBSO) full disk solar images from (01-09) aug 2015.
  • The format for start and end time should be YYYY-MM-DD HH:MM:SS.
  • The ann_file or annotation file is a H-alpha based manually labelled filaments in a json file comes with petdata.
__file__ = 'augmentation_process.ipynb'
bbso_json = os.path.abspath(
        os.path.join(os.path.dirname(__file__), 'petdata', 'bbso_json_data','2015_chir_data.json'))
filamentInfo = FilamentMetadata(ann_file = bbso_json, start_time = '2015-08-01 00:00:15',
                                    end_time = '2015-08-30 23:59:59')
filamentInfo.get_chirality_distribution()
(22, 30, 186)
  • In order to generate extra filaments for left, right or unidentified chirality by either balancing the data or getting them in required ratios to train them using an ML algorithm. A filament dataset class should be initialized which is quite similar to that of pytorch dataset class.
  • The transform list should be list of torchvision transformations
  • Filament ratio is tuple variable that takes (L,R,U).

Initializing Filament dataset

To initialize filament dataset class follow parameters are required:

  • bbso_path - BBSO full disk H-alpha solar images comes with petdata, path of the folder.
  • ann_file - a H-alpha based manually labelled filaments in a json file comes with petdata.
  • The format for start and end time should be YYYY-MM-DD HH:MM:SS.
bbso_path = os.path.abspath(os.path.join(os.path.dirname(__file__), 'petdata', '2015'))
dataset = FilamentDataset(bbso_path = bbso_path, ann_file = bbso_json, 
                          start_time = "2015-08-01 17:36:15", end_time = "2015-08-09 17:36:15")
loading annotations into memory...
Done (t=0.07s)
creating index...
index created!

Setup transformations for data augmentation

The transformations function can be refered from torchvision transforms

  • Here transforms variable should have list of torchvision transforms functions as shown below:
transforms1 = [
    transforms.ColorJitter(brightness=(0.25,1.25), contrast=(0.25,2.00), saturation=(0.25,2.25)),
    transforms.RandomRotation(15,expand=False,fill=110)
]

Initializing data loader

  • dataset = object of filament dataset class.
  • batch_size = number of filaments to be generated per batch.
  • filament_ratio = tuple of three values, i.e., ratios of left, right and unidentified chirality to be generated in each batch.
  • n_batchs = number of batchs.
  • transforms = list of torchvision transformations functions
  • image_dim = image dimensions if image dimension is -1 then image will not be resize, i.e., output is original image size.
data_loader = FilamentDataLoader(dataset = dataset,batch_size = 3 , filament_ratio = (1, 1, 1),n_batchs = 10, 
                                 transforms = transforms1, image_dim = 224)

How to generate 3 filament images for every batch with ratio of left as 1, right chirality as 1 and unidentified as 1 for 10 batches with original image dimension and display the images?

data_loader = FilamentDataLoader(dataset = dataset,batch_size = 3 , filament_ratio = (1, 1, 1),
                                 n_batchs = 10, transforms = transforms1, image_dim = -1)

Batch -1 augmented filament images and their following labels (1=R, 0= U, -1=L)

for original_imgs, transformed_imgs, labels in data_loader:
    for org_img, img, label in zip(original_imgs ,transformed_imgs, labels):
        print("Original image")
        plt.imshow(org_img, cmap='gray')
        plt.show()
        print("Transformed image")
        plt.imshow(img, cmap='gray')
        plt.show()
        print("Label",label)
    break
Original image

png

Transformed image

png

Label 0
Original image

png

Transformed image

png

Label 1
Original image

png

Transformed image

png

Label -1

How to generate 12 filament images for every batch with ratio of left as 2, right chirality as 3 and unidentified as 1 for 5 batches with image dimension of 224x224 ?

data_loader = FilamentDataLoader(dataset = dataset,batch_size = 12 , filament_ratio = (2, 3, 1),
                                 n_batchs = 5, transforms = transforms1, image_dim = 224)
for _, imgs, labels in data_loader:
    print("size of images ",imgs.shape)
    print("labels for each batch ",labels)
size of images  torch.Size([12, 224, 224])
labels for each batch  tensor([[-1],
        [-1],
        [ 1],
        [-1],
        [ 0],
        [ 1],
        [-1],
        [ 1],
        [ 1],
        [ 1],
        [ 0],
        [ 1]])
size of images  torch.Size([12, 224, 224])
labels for each batch  tensor([[ 0],
        [ 1],
        [-1],
        [-1],
        [ 1],
        [-1],
        [ 1],
        [ 1],
        [ 0],
        [-1],
        [ 1],
        [ 1]])
size of images  torch.Size([12, 224, 224])
labels for each batch  tensor([[ 1],
        [ 1],
        [ 1],
        [ 0],
        [-1],
        [ 1],
        [-1],
        [ 0],
        [-1],
        [ 1],
        [-1],
        [ 1]])
size of images  torch.Size([12, 224, 224])
labels for each batch  tensor([[-1],
        [-1],
        [ 1],
        [ 1],
        [ 1],
        [ 0],
        [ 1],
        [-1],
        [-1],
        [ 1],
        [ 1],
        [ 0]])
size of images  torch.Size([12, 224, 224])
labels for each batch  tensor([[ 1],
        [ 1],
        [-1],
        [ 1],
        [-1],
        [ 0],
        [ 1],
        [ 0],
        [ 1],
        [-1],
        [-1],
        [ 1]])

How to generate 10 filament images for every batch only for left and right chirality for 5 batches with image dimension of 224x224 ?

  • In order to remove one type of chiraity, filament ratio, i.e., tuple(L, R, U):
    • if L=0 that means left chirality is eliminated. Similarly, this applies to other types as well.
data_loader = FilamentDataLoader(dataset = dataset,batch_size = 10 , filament_ratio = (1, 1, 0),
                                 n_batchs = 5, transforms = transforms1, image_dim = 224)
for _, imgs, labels in data_loader:
    print("size of images ",imgs.shape)
    print("labels for each batch ",labels)
size of images  torch.Size([10, 224, 224])
labels for each batch  tensor([[-1],
        [-1],
        [ 1],
        [ 1],
        [ 1],
        [-1],
        [ 1],
        [-1],
        [-1],
        [ 1]])
size of images  torch.Size([10, 224, 224])
labels for each batch  tensor([[ 1],
        [-1],
        [-1],
        [ 1],
        [-1],
        [-1],
        [ 1],
        [ 1],
        [ 1],
        [-1]])
size of images  torch.Size([10, 224, 224])
labels for each batch  tensor([[ 1],
        [ 1],
        [ 1],
        [ 1],
        [-1],
        [ 1],
        [-1],
        [-1],
        [-1],
        [-1]])
size of images  torch.Size([10, 224, 224])
labels for each batch  tensor([[ 1],
        [ 1],
        [-1],
        [-1],
        [ 1],
        [-1],
        [-1],
        [ 1],
        [-1],
        [ 1]])
size of images  torch.Size([10, 224, 224])
labels for each batch  tensor([[-1],
        [-1],
        [-1],
        [ 1],
        [ 1],
        [ 1],
        [-1],
        [ 1],
        [-1],
        [ 1]])

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

filament_augmentation_engine-0.0.3.tar.gz (22.5 MB view details)

Uploaded Source

Built Distributions

filament_augmentation_engine-0.0.3-py3.8.egg (22.5 MB view details)

Uploaded Source

File details

Details for the file filament_augmentation_engine-0.0.3.tar.gz.

File metadata

  • Download URL: filament_augmentation_engine-0.0.3.tar.gz
  • Upload date:
  • Size: 22.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.10

File hashes

Hashes for filament_augmentation_engine-0.0.3.tar.gz
Algorithm Hash digest
SHA256 1ade1f2a1c3fcbfb488912c80045f4f47e153cd72ec48315f525816796fbe880
MD5 916d415327f43240660154eb7fd2094a
BLAKE2b-256 dffda00535a794bf199fe82532fd49c2e8cf951d832aa2b6cef4c3ddfb29bf08

See more details on using hashes here.

File details

Details for the file filament_augmentation_engine-0.0.3-py3.8.egg.

File metadata

  • Download URL: filament_augmentation_engine-0.0.3-py3.8.egg
  • Upload date:
  • Size: 22.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.10

File hashes

Hashes for filament_augmentation_engine-0.0.3-py3.8.egg
Algorithm Hash digest
SHA256 9bdec80dcabb4531f0357f5b642096e5b29b40066142f2f2a50d4e4cc4be21f1
MD5 a829874cf90643ef33f12a3ab0c0fb6c
BLAKE2b-256 6473adbc39bf04fcb2375693a7b52a5dfcf51c7f7379fe75b9819ae335955f1a

See more details on using hashes here.

File details

Details for the file filament_augmentation_engine-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: filament_augmentation_engine-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 22.5 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.10

File hashes

Hashes for filament_augmentation_engine-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 861d6de48de31db087ddbc4846b837fa91febb306990209d772a29189d5cf67b
MD5 46624465670ab6ad8a98091b62b6ceb2
BLAKE2b-256 d893bf94dcac4217caaa0d703ba83f31bd43c67739329105296b663a492a918a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page