Query CSV and Parquet files using SQL
Project description
filequery
Query CSV, JSON and Parquet files using SQL.
- runs queries using a DuckDB in-memory database for efficient querying
- any SQL that works with DuckDB will work here
- use the CLI to easily query files in your terminal or automate queries/transformations as part of a script
- use the TUI for a more interactive experience
Demo
CLI
TUI
Installation
pipx install filequery
or
pip install filequery
CLI usage
Run filequery --help
to see what options are available.
usage: filequery [-h] [-f FILENAME] [-d FILESDIR] [-q QUERY] [-Q QUERY_FILE] [-o OUT_FILE [OUT_FILE ...]] [-F OUT_FILE_FORMAT] [-D DELIMITER] [-c CONFIG] [-e] [-v]
options:
-h, --help show this help message and exit
-f FILENAME, --filename FILENAME
path to a CSV, Parquet or JSON file
-d FILESDIR, --filesdir FILESDIR
path to a directory which can contain a combination of CSV, Parquet and JSON files
-q QUERY, --query QUERY
SQL query to execute against file
-Q QUERY_FILE, --query_file QUERY_FILE
path to file with query to execute
-o OUT_FILE [OUT_FILE ...], --out_file OUT_FILE [OUT_FILE ...]
file to write results to instead of printing to standard output
-F OUT_FILE_FORMAT, --out_file_format OUT_FILE_FORMAT
either csv or parquet, defaults to csv
-D DELIMITER, --delimiter DELIMITER
delimiter to use when printing result or writing to CSV file
-c CONFIG, --config CONFIG
path to JSON config file
-e, --editor run SQL editor UI for exploring data
-v, --version show program's version number and exit
For basic usage, provide a path to a CSV or Parquet file and a query to execute against it. The table name will be the
file name without the extension. If the file name does not conform to DuckDB's rules for unquoted identifiers, the
table name will need to be wrapped in double quotes. For example, a file named my data.csv
would be queried as
select * from "my data"
.
filequery --filename example/test.csv --query 'select * from test'
TUI usage
To use the TUI for querying your files, use the -e
flag and provide a path to a file or directory.
filequery -e -f path/to/file.csv
or
filequery -e -d path/to/file_directory
You can also omit a path to a file or directory and open a blank editor. This can be helpful if
you want to directly use DuckDB functions such as read_csv_auto()
for querying your files.
filequery -e
Examples
filequery --filename example/json_test.json --query 'select nested.nest_id, nested.nest_val from json_test' # query json
filequery --filesdir example/data --query 'select * from test inner join test1 on test.col1 = test1.col1' # query multiple files in a directory
filequery --filesdir example/data --query_file example/queries/join.sql # point to a file containing SQL
filequery --filesdir example/data --query_file example/queries/json_csv_join.sql # SQL file joining data from JSON and CSV files
filequery --filesdir example/test.csv --query 'select * from test; select sum(col3) from test;' # output multiple query results to multiple files
filequery --filename example/ndjson_test.ndjson --query 'select id, value, nested.subid, nested.subval from ndjson_test' # query nested JSON in an ndjson file
You can also provide a config file instead of specifying the arguments when running the command.
filequery --config <path to config file>
The config file should be a json file. See example config file contents below.
{
"filename": "../example/test.csv",
"query": "select col1, col2 from test"
}
{
"filesdir": "../example/data",
"query_file": "../example/queries/join.sql",
"out_file": "result.parquet",
"out_file_format": "parquet"
}
See the example
directory in the repo for more examples.
Module usage
You can also use filequery in your own programs. See the example below.
from filequery.filedb import FileDb
query = 'select * from test'
# read test.csv into a table called "test"
fdb = FileDb('example/test.csv')
# return QueryResult object
res = fdb.exec_query(query)
# formats result as csv
print(str(res))
# saves query result to result.csv
res.save_to_file('result.csv')
# saves query result as parquet file
fdb.export_query(query, 'result.parquet', FileType.PARQUET)
Development
Packages required for distribution should go in requirements.txt
.
To build the wheel:
pip install -r requirements-dev.txt
make
Testing
To test the CLI, create a separate virtual environment perform an editable install.
python -m venv test-env
. test-env/bin/activate
pip install -e .
To run unit tests, stay in the root of the project. The unit tests add src
to the path so filequery
can be imported properly.
python tests/test_filequery.py
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file filequery-0.2.6.tar.gz
.
File metadata
- Download URL: filequery-0.2.6.tar.gz
- Upload date:
- Size: 22.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4e3f0140c56cca55dbcdb9cea780b1addf1d4018211dc303073357607471e484 |
|
MD5 | 0176bf3901e6e1db0b07240c8fd39c7b |
|
BLAKE2b-256 | b97e01578cc7fcbc899d7768f32f5b99f183ce0113cfee6a989a6d4b2fd74e49 |
File details
Details for the file filequery-0.2.6-py3-none-any.whl
.
File metadata
- Download URL: filequery-0.2.6-py3-none-any.whl
- Upload date:
- Size: 17.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e7e26960d7cb0f0b7827ddd1f23a0566e15c99d60f23c2d649017160fb0c9add |
|
MD5 | 3626376f4fb62c046598fdf1aff088b4 |
|
BLAKE2b-256 | b4f8b45f30cdd77216d8270060100df9588bc01291175ff71af8647ab4dc1b54 |