Skip to main content

A memory profiler for data batch processing applications.

Project description

The Fil memory profiler for Python

Your Python code reads some data, processes it, and uses too much memory; maybe it even dies due to an out-of-memory error. In order to reduce memory usage, you first need to figure out:

  1. Where peak memory usage is, also known as the high-water mark.
  2. What code was responsible for allocating the memory that was present at that peak moment.

That's exactly what Fil will help you find. Fil an open source memory profiler designed for data processing applications written in Python, and includes native support for Jupyter. Fil runs on Linux and macOS, and supports Python 3.6 and later.

Getting help

What users are saying

"Within minutes of using your tool, I was able to identify a major memory bottleneck that I never would have thought existed. The ability to track memory allocated via the Python interface and also C allocation is awesome, especially for my NumPy / Pandas programs."

—Derrick Kondo

"Fil has just pointed straight at the cause of a memory issue that's been costing my team tons of time and compute power. Thanks again for such an excellent tool!"

—Peter Sobot

License

Copyright 2021 Hyphenated Enterprises LLC

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

filprofiler-2022.1.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.12+ x86-64

filprofiler-2022.1.0-cp310-cp310-macosx_10_15_x86_64.whl (501.7 kB view details)

Uploaded CPython 3.10macOS 10.15+ x86-64

filprofiler-2022.1.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.12+ x86-64

filprofiler-2022.1.0-cp39-cp39-macosx_10_15_x86_64.whl (501.7 kB view details)

Uploaded CPython 3.9macOS 10.15+ x86-64

filprofiler-2022.1.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.12+ x86-64

filprofiler-2022.1.0-cp38-cp38-macosx_10_15_x86_64.whl (501.8 kB view details)

Uploaded CPython 3.8macOS 10.15+ x86-64

filprofiler-2022.1.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.12+ x86-64

filprofiler-2022.1.0-cp37-cp37m-macosx_10_15_x86_64.whl (501.8 kB view details)

Uploaded CPython 3.7mmacOS 10.15+ x86-64

filprofiler-2022.1.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.12+ x86-64

filprofiler-2022.1.0-cp36-cp36m-macosx_10_15_x86_64.whl (501.8 kB view details)

Uploaded CPython 3.6mmacOS 10.15+ x86-64

File details

Details for the file filprofiler-2022.1.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for filprofiler-2022.1.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b48a53e0caa7792c8d98c15cce243634288d6b93b1e9f40cbd5876eaa63ee7dc
MD5 d4ef4aeff895fa6f4dbb355d1c177e95
BLAKE2b-256 8e7fab5787bf98dbab62b5802e75e9deef8c5aa59ee07db9b0c914f558d71242

See more details on using hashes here.

File details

Details for the file filprofiler-2022.1.0-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: filprofiler-2022.1.0-cp310-cp310-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 501.7 kB
  • Tags: CPython 3.10, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for filprofiler-2022.1.0-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 6466eaadc1fbf18a8d21f26d48d8bbcd3728c4e2ca997200018f5e37b001ee83
MD5 15f7a4d78ff5ebca4bcd26f968e9247b
BLAKE2b-256 f6161fca5686f1461408a703aad1f48ecff6a1818057e619cfcdc71c1f23dcf1

See more details on using hashes here.

File details

Details for the file filprofiler-2022.1.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for filprofiler-2022.1.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3427542c4ba42322f9682fdb9418abbbeb3565961e0485d0ccb665cfe5a28045
MD5 9efa8df15ab0b86d3d9ffd682689e109
BLAKE2b-256 f48d73753fdf7e2fcd4c0c2d8102a5f436a1debc922d95c7982284d53b97aa92

See more details on using hashes here.

File details

Details for the file filprofiler-2022.1.0-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: filprofiler-2022.1.0-cp39-cp39-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 501.7 kB
  • Tags: CPython 3.9, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for filprofiler-2022.1.0-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 68e6f4d3c3d4124306c8ca651bbb04c125edf76a38a61a37803d322c7c8aa0d0
MD5 55d4942da5fbea37f0ea877dd2eaeb10
BLAKE2b-256 260a41b8cda6e9b99a6b8382066c2acbfa03d8a1680d2a4dd1b50612d9baede3

See more details on using hashes here.

File details

Details for the file filprofiler-2022.1.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for filprofiler-2022.1.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 182126fee5b234ec07e7ad71adff8264f75bf2371277dbe10d71de567271d7f7
MD5 8ef7edb1a39484198487df594532d599
BLAKE2b-256 85633defe55aafd369e3d4123b418e49a18f5f429c3bdabcfa57e2b6afc6e687

See more details on using hashes here.

File details

Details for the file filprofiler-2022.1.0-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: filprofiler-2022.1.0-cp38-cp38-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 501.8 kB
  • Tags: CPython 3.8, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for filprofiler-2022.1.0-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 bf695f73cc6440684076901a508012eb32adbf80ff10edb123180825f8f29579
MD5 6aeb69c05505e7aacd0be9bc2d05db31
BLAKE2b-256 fe6344ae2ad4c7b2fcc94258fccdf29433f10861ba003c41dd507baf9a236d3c

See more details on using hashes here.

File details

Details for the file filprofiler-2022.1.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for filprofiler-2022.1.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 dd7e033616ccf73f08bf8736aa42b0eb995c83f83b13304537361eb346c4d4ce
MD5 b3f50a45c2f035aef95cee94c9b376da
BLAKE2b-256 d012d8ff279a6cca1bb4f529288411263051ce949657a00552286abbc05c1b9c

See more details on using hashes here.

File details

Details for the file filprofiler-2022.1.0-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: filprofiler-2022.1.0-cp37-cp37m-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 501.8 kB
  • Tags: CPython 3.7m, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for filprofiler-2022.1.0-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 4b824a25f14c7b1753578df406245faaa1d3873cfd447e065ede1d0339a4a54b
MD5 40251671e6e732644b0bdf500e5766ff
BLAKE2b-256 3ea8c0e21d2c59c1e1f8625b9040cf3897aa523a692c8393032cdb03df08fba2

See more details on using hashes here.

File details

Details for the file filprofiler-2022.1.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for filprofiler-2022.1.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c1fda7ba8a3c0662ee97a3808afc74fcc69671760733c927142aa807b1c2613d
MD5 ade8a6a1635f2dc8104442930650f51a
BLAKE2b-256 6bfb56ea8ac281b0a53840242e5f80a09dde24c96d70e5b4d6ee011ec1f20aef

See more details on using hashes here.

File details

Details for the file filprofiler-2022.1.0-cp36-cp36m-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: filprofiler-2022.1.0-cp36-cp36m-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 501.8 kB
  • Tags: CPython 3.6m, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for filprofiler-2022.1.0-cp36-cp36m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 3ecb438c5ad634eac2ddd18b23ec501683ce6afa269edeea1777cec7a8af55cc
MD5 27b01582c5585281c1a97a5b9d51b685
BLAKE2b-256 580cb4a46b4fb477693831c4fb05bf23c006c1e04f3e9a9863586398e5ca9bd0

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page