Skip to main content

Validation and data pipelines made easy!

Project description

https://travis-ci.org/eflglobal/filters.svg?branch=master https://readthedocs.org/projects/filters/badge/?version=latest

Filters

The Filters library provides an easy and readable way to create complex data validation and processing pipelines, including:

  • Validating complex JSON structures in API requests or config files.

  • Parsing timestamps and converting to UTC.

  • Converting Unicode strings to NFC, normalizing line endings and removing unprintable characters.

  • Decoding Base64, including URL-safe variants.

And much more!

The output from one filter can be “piped” into the input of another, enabling you to “chain” filters together to quickly and easily create complex data pipelines.

Examples

Validate a latitude position and round to manageable precision:

(
    f.Required
  | f.Decimal
  | f.Min(Decimal(-90))
  | f.Max(Decimal(90))
  | f.Round(to_nearest='0.000001')
).apply('-12.0431842')

Parse an incoming value as a datetime, convert to UTC and strip tzinfo:

f.Datetime(naive=True).apply('2015-04-08T15:11:22-05:00')

Convert every value in an iterable (e.g., list) to unicode and strip leading/trailing whitespace. This also applies Unicode normalization, strips unprintable characters and normalizes line endings automatically.

f.FilterRepeater(f.Unicode | f.Strip).apply([
  b'\xe2\x99\xaa ',
  b'\xe2\x94\x8f(\xc2\xb0.\xc2\xb0)\xe2\x94\x9b ',
  b'\xe2\x94\x97(\xc2\xb0.\xc2\xb0)\xe2\x94\x93 ',
  b'\xe2\x99\xaa ',
])

Parse a JSON string and check that it has correct structure:

(
    f.JsonDecode
  | f.FilterMapper(
      {
        'birthday':  f.Date,
        'gender':    f.CaseFold | f.Choice(choices={'m', 'f', 'x'}),

        'utcOffset':
            f.Decimal
          | f.Min(Decimal('-15'))
          | f.Max(Decimal('+15'))
          | f.Round(to_nearest='0.25'),
      },

      allow_extra_keys   = False,
      allow_missing_keys = False,
    )
).apply('{"birthday":"1879-03-14", "gender":"M", "utcOffset":"1"}')

Requirements

Filters is compatible with Python versions 3.6, 3.5 and 2.7.

Installation

Install the latest stable version via pip:

pip install filters

Extensions

The following extensions are available:

  • Django Filters: Adds filters designed to work with Django applications. To install:

    pip install filters[django]
  • ISO Filters: Adds filters for interpreting standard codes and identifiers. To install:

    pip install filters[iso]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

filters-1.3.2.tar.gz (57.6 kB view details)

Uploaded Source

Built Distribution

filters-1.3.2-py2.py3-none-any.whl (37.1 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file filters-1.3.2.tar.gz.

File metadata

  • Download URL: filters-1.3.2.tar.gz
  • Upload date:
  • Size: 57.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for filters-1.3.2.tar.gz
Algorithm Hash digest
SHA256 b74fad6a7885f1380dd12fde0f849e8c5e459919ce314f76c2352064c7a30796
MD5 07f661441e3a176b0484585fe12d6e06
BLAKE2b-256 537808fb3baa3ff3cd3833866ae13de7871b702fe3fcd8ea9c49c8493de74572

See more details on using hashes here.

File details

Details for the file filters-1.3.2-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for filters-1.3.2-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 248150dfd768f9211f4c897696f3f4c370697e0f19b9c1f85577a27495b18496
MD5 956425d35892f45da3bc9614ca0ab306
BLAKE2b-256 3ebd8d307686d7b058f5e0c51d5f188a438259a670ec0d5f8ebda7ebe9b447af

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page