Skip to main content

Transparent and Efficient Financial Analysis

Project description

FinanceToolkit

GitHub Sponsors Documentation Supported Python Versions PYPI Version PYPI Downloads

While browsing a variety of websites, I kept finding that the same financial metric can greatly vary per source and so do the financial statements reported while little information is given how the metric was calculated.

For example, Microsoft's Price-to-Earnings (PE) ratio on the 6th of May, 2023 is reported to be 28.93 (Stockopedia), 32.05 (Morningstar), 32.66 (Macrotrends), 33.09 (Finance Charts), 33.66 (Y Charts), 33.67 (Wall Street Journal), 33.80 (Yahoo Finance) and 34.4 (Companies Market Cap). All of these calculations are correct, however the method applied varies leading to different results. Therefore, collecting data from multiple sources can lead to wrong interpretation of the results given that one source could be applying a different calculation method than another. And that is, if it is even freely available. Often the calculation is hidden behind a paid subscription.

This is why I designed the FinanceToolkit, this is an open-source toolkit in which all relevant financial ratios (130+), indicators and performance measurements are written down in the most simplistic way allowing for complete transparency of the calculation method (proof). This allows you to not have to rely on metrics from other providers and, given a financial statement, allow for efficient manual calculations. This leads to one uniform method of calculation being applied that is available and understood by everyone.

The Finance Toolkit not only supports Equities. Even for Currencies, Cryptocurrencies, ETFs, Mutual Funds, Indices, Money Markets, Commodities and more, the Finance Toolkit can be used to obtain historical data as well as important performance and risk measurements such as the Sharpe Ratio and Value at Risk.

The Finance Toolkit is complimented very well with the Finance Database 🌎, a database that features 300.000+ symbols containing Equities, ETFs, Funds, Indices, Currencies, Cryptocurrencies and Money Markets. By utilising both, it is possible to do a fully-fledged competitive analysis with the tickers found from the FinanceDatabase inputted into the FinanceToolkit.

Finance Toolkit Illustration


Table of Contents

  1. Installation
  2. Functionality
  3. Basic Usage
  4. Available Metrics
  5. Contributing
  6. Contact

Installation

Before installation, consider starring the project on GitHub which helps others find the project as well.

image

To install the FinanceToolkit it simply requires the following:

pip install financetoolkit -U

Then within Python use:

from financetoolkit import Toolkit

companies = Toolkit(
    tickers=['GOOGL', 'MSFT', 'AMZN'],
    api_key="FINANCIAL_MODELING_PREP_KEY",
)

To be able to get started, you need to obtain an API Key from FinancialModelingPrep. This is used to gain access to 30+ years of financial statement both annually and quarterly. Note that the Free plan is limited to 250 requests each day, 5 years of data and only features companies listed on US exchanges.


Obtain an API Key from FinancialModelingPrep here.


Through the link you are able to subscribe for the free plan and also premium plans at a 15% discount. This is an affiliate link and thus supports the project at the same time. I have chosen FinancialModelingPrep as a source as I find it to be the most transparent, reliable and at an affordable price. I have yet to find a platform offering such low prices for the amount of data offered. When you notice that the data is inaccurate or have any other issue related to the data, note that I simply provide the means to access this data and I am not responsible for the accuracy of the data itself. For this, use their contact form or provide the data yourself.

Functionality

The Finance Toolkit features the following functionality, also see Basic Usage to see some of these functions in action:

  • Company profiles (get_profile), including country, sector, ISIN and general characteristics (from FinancialModelingPrep)
  • Company quotes (get_quote), inclufding 52 week highs and lows, volume metrics and current shares outstanding (from FinancialModelingPrep)
  • Company ratings (get_rating), based on key indicators like PE and DE ratios (from FinancialModelingPrep)
  • Historical market data (get_historical_data), which can be retrieved on a daily, weekly, monthly, quarterly and yearly basis. This includes OHLC, dividends, returns, cumulative returns and volatility calculations for each corresponding period. (from Yahoo Finance)
  • Treasury Rates (get_treasury_data) for several months and several years over the last 3 months which allows yield curves to be constructed (from Yahoo Finance)
  • Analyst Estimates (get_analyst_estimates) that show the expected EPS and Revenue from the past and future from a range of analysts (from FinancialModelingPrep)
  • Earnings Calendar(get_earnings_calendar) which shows the exact dates earnings are released in the past and in the future including expectations (from FinancialModelingPrep)
  • Revenue Geographic Segmentation (get_revenue_geographic_segmentation) which shows the revenue per company from each country and Revenue Product Segmentation (get_revenue_product_segmenttion) which shows the revenue per company from each product (from FinancialModelingPrep)
  • Balance Sheet Statements (get_balance_sheet_statement), Income Statements (get_income_statement), Cash Flow Statements (get_cash_flow_statement) and Statistics Statements (get_statistics_statement), obtainable from FinancialModelingPrep or the source of your choosing through custom input. These functions are accompanied with a normalization function so that for any source, the same ratio analysis can be performed. Next to that, you can obtain growth and trailing (TTM) results as well. Please see this Jupyter Notebook that explains how to use a custom source.
  • Efficiency ratios (ratios.collect_efficiency_ratios), liquidity ratios (ratios.collect_liquidity_ratios), profitability ratios (ratios._collect_profitability_ratios), solvency ratios (ratios.collect_solvency_ratios) and valuation ratios (ratios.collect_valuation_ratios) functionality that automatically calculates the most important ratios (50+) based on the inputted balance sheet, income and cash flow statements. Any of the underlying ratios can also be called individually such as ratios.get_return_on_equity and it is possible to calculate their growth with lags as well as calculate trailing metrics (TTM). Next to that, it is also possible to input your own custom ratios (ratios.collect_custom_ratios). See also this Notebook for more information.
  • Models like DUPONT analysis (models.get_extended_dupont_analysis) or Enterprise Breakdown (models.get_enterprise_value_breakdown) that can be used to perform in-depth financial analysis through a single function. These functions combine much of the functionality throughout the Toolkit to provide advanced calculations.
  • Performance metrics like Jensens Alpha (performance.get_jensens_alpha), Capital Asset Pricing Model (CAPM) (performance.get_capital_asset_pricing_model) and (Rolling) Sharpe Ratio (performance.get_sharpe_ratio) that can be used to understand how each company is performing versus the benchmark and compared to each other.
  • Risk metrics like Value at Risk (risk.get_value_at_risk) and Conditional Value at Risk (risk.get_conditional_value_at_risk) that can be used to understand the risk profile of each company and how it compares to the benchmark.
  • Technical indicators like Relative Strength Index (technicals.get_relative_strength_index), Exponential Moving Average (technicals.get_exponential_moving_average) and Bollinger Bands (technicals.get_bollinger_bands) that can be used to perform in-depth momentum and trend analysis. These functions allow for the calculation of technical indicators based on the historical market data.

The dependencies of the package are on purpose very slim so that it will work well with any combination of packages and not result in conflicts.

Basic Usage

This section is an introduction to the Finance Toolkit. Also see this notebook for a detailed Getting Started guide as well as this notebook that includes the Finance Database 🌎 and a proper financial analysis. Next to that, find below a fully-fledged code documentation as well as Jupyter Notebooks in which you can see many examples ranging from basic examples to creating custom ratios to working with your own datasets.


Find a variety of How-To Guides including Code Documentation for the FinanceToolkit here.


A basic example of how to use the Finance Toolkit is shown below.

from financetoolkit import Toolkit

companies = Toolkit(['AAPL', 'MSFT'], api_key="FINANCIAL_MODELING_PREP_KEY", start_date='2017-12-31')

# a Historical example
historical_data = companies.get_historical_data()

# a Financial Statement example
balance_sheet_statement = companies.get_balance_sheet_statement()

# a Ratios example
profitability_ratios = companies.ratios.collect_profitability_ratios()

# a Models example
extended_dupont_analysis = companies.models.get_extended_dupont_analysis()

# a Performance example
capital_asset_pricing_model = companies.performance.get_capital_asset_pricing_model(show_full_results=True)

# a Risk example
value_at_risk = companies.risk.get_value_at_risk(period='quarterly')

# a Technical example
bollinger_bands = companies.technicals.get_bollinger_bands()

Generally, the functions return a DataFrame with a multi-index in which all tickers, in this case Apple and Microsoft, are presented. To keep things manageable for this README, I've selected just Apple but in essence it can be any list of tickers (no limit). The filtering is done through using .loc['AAPL'] and .xs('AAPL', level=1, axis=1) based on whether it's fundamental data or historical data respectively.

Obtaining Historical Data

Obtain historical data on a daily, weekly, monthly or yearly basis. This includes OHLC, volumes, dividends, returns, cumulative returns and volatility calculations for each corresponding period.

Date Open High Low Close Adj Close Volume Dividends Return Volatility Excess Return Excess Volatility Cumulative Return
2018-01-02 42.54 43.075 42.315 43.065 40.7765 1.02224e+08 0 0 0.0203524 -0.00674528 0.0231223 1
2018-01-03 43.1325 43.6375 42.99 43.0575 40.7694 1.18072e+08 0 -0.000173997 0.0203524 -0.024644 0.0231223 0.999826
2018-01-04 43.135 43.3675 43.02 43.2575 40.9588 8.97384e+07 0 0.00464441 0.0203524 -0.0198856 0.0231223 1.00447
2018-01-05 43.36 43.8425 43.2625 43.75 41.4251 9.464e+07 0 0.0113856 0.0203524 -0.0133744 0.0231223 1.01591
2018-01-08 43.5875 43.9025 43.4825 43.5875 41.2713 8.22712e+07 0 -0.00371412 0.0203524 -0.0285141 0.0231223 1.01213

Obtaining Financial Statements

Obtain a Balance Sheet Statement on an annual or quarterly basis. This can also be an income statement (companies.get_income_statement()) or cash flow statement (companies.get_cash_flow_statement()).

2018 2019 2020 2021 2022
Cash and Cash Equivalents 2.5913e+10 4.8844e+10 3.8016e+10 3.494e+10 2.3646e+10
Short Term Investments 4.0388e+10 5.1713e+10 5.2927e+10 2.7699e+10 2.4658e+10
Cash and Short Term Investments 6.6301e+10 1.00557e+11 9.0943e+10 6.2639e+10 4.8304e+10
Accounts Receivable 4.8995e+10 4.5804e+10 3.7445e+10 5.1506e+10 6.0932e+10
Inventory 3.956e+09 4.106e+09 4.061e+09 6.58e+09 4.946e+09
Other Current Assets 1.2087e+10 1.2352e+10 1.1264e+10 1.4111e+10 2.1223e+10
Total Current Assets 1.31339e+11 1.62819e+11 1.43713e+11 1.34836e+11 1.35405e+11
Property, Plant and Equipment 4.1304e+10 3.7378e+10 3.6766e+10 3.944e+10 4.2117e+10
Goodwill 0 0 0 0 0
Intangible Assets 0 0 0 0 0
Long Term Investments 1.70799e+11 1.05341e+11 1.00887e+11 1.27877e+11 1.20805e+11
Tax Assets 0 0 0 0 0
Other Fixed Assets 2.2283e+10 3.2978e+10 4.2522e+10 4.8849e+10 5.4428e+10
Fixed Assets 2.34386e+11 1.75697e+11 1.80175e+11 2.16166e+11 2.1735e+11
Other Assets 0 0 0 0 0
Total Assets 3.65725e+11 3.38516e+11 3.23888e+11 3.51002e+11 3.52755e+11
Accounts Payable 5.5888e+10 4.6236e+10 4.2296e+10 5.4763e+10 6.4115e+10
Short Term Debt 2.0748e+10 1.624e+10 1.3769e+10 1.5613e+10 2.111e+10
Tax Payables 0 0 0 0 0
Deferred Revenue 7.543e+09 5.522e+09 6.643e+09 7.612e+09 7.912e+09
Other Current Liabilities 3.2687e+10 3.772e+10 4.2684e+10 4.7493e+10 6.0845e+10
Total Current Liabilities 1.16866e+11 1.05718e+11 1.05392e+11 1.25481e+11 1.53982e+11
Long Term Debt 9.3735e+10 9.1807e+10 9.8667e+10 1.09106e+11 9.8959e+10
Deferred Revenue Non Current 2.797e+09 0 0 0 0
Deferred Tax Liabilities 4.26e+08 0 0 0 0
Other Non Current Liabilities 4.4754e+10 5.0503e+10 5.449e+10 5.3325e+10 4.9142e+10
Total Non Current Liabilities 1.41712e+11 1.4231e+11 1.53157e+11 1.62431e+11 1.48101e+11
Other Liabilities 0 0 0 0 0
Capital Lease Obligations 0 0 0 0 0
Total Liabilities 2.58578e+11 2.48028e+11 2.58549e+11 2.87912e+11 3.02083e+11
Preferred Stock 0 0 0 0 0
Common Stock 4.0201e+10 4.5174e+10 5.0779e+10 5.7365e+10 6.4849e+10
Retained Earnings 7.04e+10 4.5898e+10 1.4966e+10 5.562e+09 -3.068e+09
Accumulated Other Comprehensive Income -3.454e+09 -5.84e+08 -4.06e+08 1.63e+08 -1.1109e+10
Other Total Shareholder Equity 0 0 0 0 0
Total Shareholder Equity 1.07147e+11 9.0488e+10 6.5339e+10 6.309e+10 5.0672e+10
Total Equity 1.07147e+11 9.0488e+10 6.5339e+10 6.309e+10 5.0672e+10
Total Liabilities and Shareholder Equity 3.65725e+11 3.38516e+11 3.23888e+11 3.51002e+11 3.52755e+11
Minority Interest 0 0 0 0 0
Total Liabilities and Equity 3.65725e+11 3.38516e+11 3.23888e+11 3.51002e+11 3.52755e+11
Total Investments 2.11187e+11 1.57054e+11 1.53814e+11 1.55576e+11 1.45463e+11
Total Debt 1.14483e+11 1.08047e+11 1.12436e+11 1.24719e+11 1.20069e+11
Net Debt 8.857e+10 5.9203e+10 7.442e+10 8.9779e+10 9.6423e+10

Obtaining Financial Ratios

Get Profitability Ratios based on the inputted balance sheet, income and cash flow statements. This can be any of the 50+ ratios within the ratios module. The get_ functions show a single ratio whereas the collect_ functions show an aggregation of multiple ratios.

2018 2019 2020 2021 2022
Gross Margin 0.3834 0.3782 0.3823 0.4178 0.4331
Operating Margin 0.2669 0.2457 0.2415 0.2978 0.3029
Net Profit Margin 0.2241 0.2124 0.2091 0.2588 0.2531
Interest Coverage Ratio 25.2472 21.3862 26.921 45.4567 44.538
Income Before Tax Profit Margin 0.2745 0.2527 0.2444 0.2985 0.302
Effective Tax Rate 0.1834 0.1594 0.1443 0.133 0.162
Return on Assets (ROA) 0.1628 0.1632 0.1773 0.2697 0.2829
Return on Equity (ROE) nan 0.5592 0.7369 1.4744 1.7546
Return on Invested Capital (ROIC) 0.2699 0.2937 0.3441 0.5039 0.5627
Return on Capital Employed (ROCE) 0.306 0.2977 0.3202 0.496 0.6139
Return on Tangible Assets 0.5556 0.6106 0.8787 1.5007 1.9696
Income Quality Ratio 1.3007 1.2558 1.4052 1.0988 1.2239
Net Income per EBT 0.8166 0.8406 0.8557 0.867 0.838
Free Cash Flow to Operating Cash Flow Ratio 0.8281 0.8488 0.9094 0.8935 0.9123
EBT to EBIT Ratio 0.9574 0.9484 0.9589 0.9764 0.976
EBIT to Revenue 0.2867 0.2664 0.2549 0.3058 0.3095

Obtaining Financial Models

Get an Extended DuPont Analysis based on the inputted balance sheet, income and cash flow statements. This can also be for example an Enterprise Value Breakdown (companies.models.get_enterprise_value_breakdown()).

2017 2018 2019 2020 2021 2022
Interest Burden Ratio 0.9572 0.9725 0.9725 0.988 0.9976 1.0028
Tax Burden Ratio 0.7882 0.8397 0.8643 0.8661 0.869 0.8356
Operating Profit Margin 0.2796 0.2745 0.2527 0.2444 0.2985 0.302
Asset Turnover nan 0.7168 0.7389 0.8288 1.0841 1.1206
Equity Multiplier nan 3.0724 3.5633 4.2509 5.255 6.1862
Return on Equity nan 0.4936 0.5592 0.7369 1.4744 1.7546

Obtaining Performance Metrics

Get the Expected Return as defined by the Capital Asset Pricing Model. Here with the show_full_results=True parameter not only the expected return is found but also the Betas. The beauty of this is that it can be based on any period as the function also accepts the period 'weekly', 'monthly', 'quarterly' and 'yearly' (as shown below).

Date Risk Free Rate Beta AAPL Beta MSFT Benchmark Returns CAPM AAPL CAPM MSFT
2017 0.024 1.36406 1.29979 0.1942 0.2562 0.245223
2018 0.0269 1.25651 1.44686 -0.0623726 -0.0853 -0.102265
2019 0.0192 1.5572 1.2942 0.288781 0.439 0.36809
2020 0.0092 1.12329 1.1204 0.162589 0.1815 0.181058
2021 0.0151 1.3144 1.1523 0.268927 0.3487 0.307586
2022 0.0388 1.30786 1.2829 -0.194428 -0.2662 -0.260409
2023 0.0427 1.20463 1.2727 0.157231 0.1807 0.188465

Obtaining Risk Metrics

Get the Value at Risk for each quarter. Here, the days within each quarter are considered for the Value at Risk. This makes it so that you can understand within each period what is the expected Value at Risk (VaR) which can again be any period but also based on distributions such as Historical, Gaussian, Student-t, Cornish-Fisher.

AAPL MSFT Benchmark
2017Q1 -0.0042 -0.0098 -0.0036
2017Q2 -0.0147 -0.0182 -0.0068
2017Q3 -0.0171 -0.0119 -0.0071
2017Q4 -0.0149 -0.0084 -0.0041
2018Q1 -0.025 -0.0291 -0.0212
2018Q2 -0.016 -0.0228 -0.0131
2018Q3 -0.0163 -0.0135 -0.0065
2018Q4 -0.0461 -0.0394 -0.0267
2019Q1 -0.0189 -0.0195 -0.0094
2019Q2 -0.0204 -0.0208 -0.0117
2019Q3 -0.0216 -0.0268 -0.0121
2019Q4 -0.0137 -0.0138 -0.0083
2020Q1 -0.0653 -0.0668 -0.0517
2020Q2 -0.0297 -0.0257 -0.0278
2020Q3 -0.0406 -0.0326 -0.0168
2020Q4 -0.0296 -0.0279 -0.0137
2021Q1 -0.0348 -0.0267 -0.0148
2021Q2 -0.0176 -0.0159 -0.0092
2021Q3 -0.0234 -0.0167 -0.0117
2021Q4 -0.0204 -0.0206 -0.0118
2022Q1 -0.0258 -0.0374 -0.0194
2022Q2 -0.0396 -0.0424 -0.0355
2022Q3 -0.029 -0.029 -0.0205
2022Q4 -0.0364 -0.0314 -0.0234
2023Q1 -0.018 -0.0257 -0.0156
2023Q2 -0.01 -0.0191 -0.0076
2023Q3 -0.0314 -0.0226 -0.0105

Obtaining Technical Indicators

Get Bollinger Bands based on the historical market data. This can be any of the 30+ technical indicators within the technicals module. The get_ functions show a single indicator whereas the collect_ functions show an aggregation of multiple indicators.

Date Lower Band Middle Band Upper Band
2023-08-22 170.336 178.524 186.712
2023-08-23 173.376 177.824 182.272
2023-08-24 173.56 177.441 181.322
2023-08-25 173.56 177.441 181.323
2023-08-28 173.486 177.486 181.487

Available Metrics

The Finance Toolkit has the ability to calculate 100+ financial metrics. The following list shows all of the available metrics. Note that the Finance Toolkit is not limited to these ratios and indicators as it is possible to add custom ratios as well. See this Notebook for more information.

Each ratio and indicator has a corresponding function that can be called directly for example ratios.get_return_on_equity or technicals.get_relative_strength_index.

Financial Ratios

The Ratios Module contains over 50+ ratios that can be used to analyse companies. These ratios are divided into 5 categories which are efficiency, liquidity, profitability, solvency and valuation. Each ratio is calculated using the data from the Toolkit module. Find the documentation here which includes an explanation about the ratio, the parameters and an example.

All of these ratios can be calculated based on (lagged) growth as well as trailing (e.g. TTM) metrics. This is embedded in all ratios as well as the financial statements themselves which means it is possible to calculate revenue growth and 12-month (TTM) Price-to-Earnings with the parameters growth=True and trailing=4 respectively. Note that trailing is based on periods therefore TTM can only be calculated by setting quarterly=True in the Toolkit initialization.

Efficiency Ratios

  • Asset Turnover Ratio
  • Inventory Turnover Ratio
  • Days of Inventory Outstanding
  • Days of Sales Outstanding
  • Operating Cycle
  • Accounts Payables Turnover Ratio
  • Days of Accounts Payable Outstanding
  • Cash Conversion Cycle
  • Receivables Turnover
  • SGA to Revenue Ratio
  • Fixed Asset Turnover
  • Operating Ratio

Liquidity Ratios

  • Current Ratio
  • Quick Ratio
  • Cash Ratio
  • Working Capital
  • Operating Cash Flow Ratio
  • Operating Cash Flow Sales Ratio
  • Short Term Coverage Ratio

Profitability Ratios

  • Gross Margin
  • Operating Margin
  • Net Profit Margin
  • Interest Burden Ratio
  • Income Before Tax Profit Margin
  • Effective Tax Rate
  • Return on Assets (RoA)
  • Return on Equity (RoE)
  • Return on Invested Capital (RoIC)
  • Income Quality Ratio
  • Return on Tangible Assets (RoTA)
  • Return on Capital Employed (RoCE)
  • Net Income per EBT
  • Free Cash Flow Operating Cash Flow Ratio
  • Tax Burden Ratio
  • EBT to EBIT
  • EBIT to Revenue

Solvency Ratios

  • Debt to Assets Ratio
  • Debt to Equity Ratio
  • Interest Coverage Ratio
  • Equity Multiplier
  • Debt Service Coverage Ratio
  • Free Cash Flow Yield
  • Net Debt to EBITDA Ratio
  • Cash Flow Coverage Ratio
  • CAPEX Coverage Ratio
  • CAPEX Dividend Coverage Ratio

Valuation Ratios

  • Earnings per Share (EPS)
  • Revenue per Share (RPS)
  • Price Earnings Ratio (PE)
  • Price to Earnings Growth Ratio (PEG)
  • Book Value per Share
  • Price to Book Ratio (PB)
  • Interest Debt per Share
  • CAPEX per Share
  • Dividend Yield
  • Weighted Dividend Yield
  • Price to Cash Flow Ratio (P/CF)
  • Price to Free Cash Flow Ratio (P/FCF)
  • Market Capitalization
  • Enterprise Value
  • EV to Sales Ratio
  • EV to EBITDA Ratio
  • EV to Operating Cashflow Ratio
  • EV to EBIT
  • Earnings Yield
  • Payout Ratio
  • Tangible Asset Value
  • Net Current Asset Value

Financial Models

The Models module is meant to execute well-known models such as DUPONT and the Discounted Cash Flow (DCF) model. These models are also directly related to the data retrieved from the Toolkit module. Find the documentation here which includes an explanation about the model, the parameters and an example.

  • DuPont Analysis
  • Extended DuPont Analysis
  • Enterprise Value Breakdown
  • Weighted Average Cost of Capital (WACC)
  • Intrinsic Valuation

Performance Metrics

The Performance module is meant to calculate important performance metrics such as Sharpe Ratio, Sortino Ratio, Treynor Ratio, Information Ratio, Jensen's Alpha, Beta, Capital Asset Pricing Model, Factor Models and more. Find the documentation here which includes an explanation about the performance metrics, the parameters and an example.

  • Alpha
  • Jensen's Alpha
  • Beta
  • Capital Asset Pricing Model (CAPM)
  • Factor Asset Correlations
  • Factor Correlations
  • Fama-French 5 Factor Model (FF)
  • Treynor Ratio
  • Sharpe Ratio
  • Sortino Ratio
  • Ulcer Performance Index (UPI)
  • M2 Ratio
  • Tracking Error
  • Information Error

Risk Metrics

The Risk module is meant to calculate important risk metrics such as Value at Risk (VaR), Conditional Value at Risk (cVaR), Maximum Drawdown, Correlations, Beta, GARCH, EWMA and more. Find the documentation here which includes an explanation about the risk metrics, the parameters and an example.

  • Value at Risk (VaR) with distributions Historical, Gaussian, Student-t, Cornish-Fisher.
  • Conditional Value at Risk (cVaR) with distributions Historical, Gaussian, Laplace, Logistic.
  • Entropic Value at Risk (eVaR) with a Gaussian distribution.
  • Ulcer Index (UI)
  • Maximum Drawdown (MDD)
  • Skewness
  • Kurtosis

Technical Indicators

The Technicals Module contains 30+ Technical Indicators that can be used to analyse companies. These ratios are divided into 4 categories which are breadth, momentum, overlap and volatility. Each indicator is calculated using the data from the Toolkit module. Find the documentation here which includes an explanation about the indicator, the parameters and an example.

Breadth Indicators

  • McClellan Oscillator
  • Advancers/Decliners Ratio
  • On-Balance Volume (OBV)
  • Accumulation/Distribution Line (ADL)
  • Chaikin Oscillator

Momentum Indicators

  • Money Flow Index
  • Williams %R
  • Aroon Indicator
  • Commodity Channel Index
  • Relative Vigor Index
  • Force Index
  • Ultimate Oscillator
  • Percentage Price Oscillator
  • Detrended Price Oscillator
  • Average Directional Index (ADX)
  • Chande Momentum Oscillator (CMO)
  • Ichimoku Cloud
  • Stochastic Oscillator
  • Moving Average Convergence Divergence (MACD)
  • Relative Strength Index (RSI)
  • Balance of Power (BOP)

Overlap Indicators

  • Simple Moving Average (SMA)
  • Exponential Moving Average (EMA)
  • Double Exponential Moving Average (DEMA)
  • Triple Exponential Moving Average (TRIX)
  • Triangular Moving Average (TMA)

Volatility Indicators

  • True Range (TR)
  • Average True Range (ATR)
  • Keltners Channels
  • Bollinger Bands

Contributing

First off all, thank you for taking the time to contribute (or at least read the Contributing Guidelines)! 🚀


Find the Contributing Guidelines here.


The goal of the Finance Toolkit is to make any type of financial calculation as transparent and efficient as possible. I want to make these type of calculations as accessible to anyone as possible and seeing how many websites exists that do the same thing (but instead you have to pay) gave me plenty of reasons to work on this.

Contact

If you have any questions about the FinanceToolkit or would like to share with me what you have been working on, feel free to reach out to me via:

If you'd like to support my efforts, either help me out by contributing to the package or Sponsor Me.

Star History Chart

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

financetoolkit-1.4.0.tar.gz (136.1 kB view details)

Uploaded Source

Built Distribution

financetoolkit-1.4.0-py3-none-any.whl (143.1 kB view details)

Uploaded Python 3

File details

Details for the file financetoolkit-1.4.0.tar.gz.

File metadata

  • Download URL: financetoolkit-1.4.0.tar.gz
  • Upload date:
  • Size: 136.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for financetoolkit-1.4.0.tar.gz
Algorithm Hash digest
SHA256 bc0ddf6535e23a10a5fa50bc62be26003a3ba01afae05c5606a4a8d050e73c14
MD5 0258815e412d529e7fe6274a4fb8679c
BLAKE2b-256 68f2e7fb64817931249f3c9f9e9f6335cc6d6eb0fb83c761d4a59a0025937119

See more details on using hashes here.

File details

Details for the file financetoolkit-1.4.0-py3-none-any.whl.

File metadata

File hashes

Hashes for financetoolkit-1.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 f69d5db1115582973fcfb8ad6ea49d1d95e8df9f41c43943d296faa3e6a7456d
MD5 703461b66b0912651d0c4d07b4bd9877
BLAKE2b-256 1a381564c70ef2d4fe1c10142766016d8d3752f7528f63fb404b0875ffbfbc95

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page