Skip to main content

Finite difference weights for any derivative order on arbitrarily spaced grids.

Project description

Build status PyPI version Zenodo DOI Python version License coverage

finitediff containts three implementations of Begnt Fornberg’s formulae for generation of finite difference weights on aribtrarily spaced one dimensional grids:

The finite difference weights can be used for optimized inter-/extrapolation data series for up to arbitrary derivative order. Python bindings (to the C versions) are also provided.

Capabilities

finitediff currently provides callbacks for estimation of derivatives or interpolation either at a single point or over an array (available from the Python bindings).

The user may also manually generate the corresponding weights. (see calculate_weights)

Finitediff can be conditionally compiled to make finitediff_interpolate_by_finite_diff multithreaded (when FINITEDIFF_OPENMP is defined). Then the number of threads used is set through the environment variable FINITEDIFF_NUM_THREADS (or OMP_NUM_THREADS).

Documentation

Autogenerated API documentation for latest stable release is found here: https://bjodah.github.io/finitediff/latest (and the development version for the current master branch is found here: http://hera.physchem.kth.se/~finitediff/branches/master/html).

Examples

Generating finite difference weights is simple using C++11:

#include "finitediff_templated.hpp"
#include <vector>
#include <string>
#include <iostream>

int main(){
    const unsigned max_deriv = 2;
    std::vector<std::string> labels {"0th derivative", "1st derivative", "2nd derivative"};
    std::vector<double> x {0, 1, -1, 2, -2};  // Fourth order of accuracy
    auto coeffs = finitediff::generate_weights(x, max_deriv);
    for (unsigned deriv_i = 0; deriv_i <= max_deriv; deriv_i++){
        std::cout << labels[deriv_i] << ": ";
        for (unsigned idx = 0; idx < x.size(); idx++){
            std::cout << coeffs[deriv_i*x.size() + idx] << " ";
        }
        std::cout << std::endl;
    }
}
$ cd examples/
$ g++ -std=c++11 demo.cpp -I../include
$ ./a.out
Zeroth derivative (interpolation): 1 -0 0 0 -0
First derivative: -0 0.666667 -0.666667 -0.0833333 0.0833333
Second derivative: -2.5 1.33333 1.33333 -0.0833333 -0.0833333

and of course using the python bindings:

>>> from finitediff import get_weights
>>> import numpy as np
>>> c = get_weights(np.array([0, -1., 1]), 0, maxorder=1)
>>> np.allclose(c[:, 1], [0, -.5, .5])
True

from Python you can also use the finite differences to interpolate values (or derivatives thereof):

>>> from finitediff import interpolate_by_finite_diff as ifd
>>> x = np.array([0, 1, 2])
>>> y = np.array([[2, 3, 5], [3, 4, 7], [7, 8, 9], [3, 4, 6]])
>>> xout = np.linspace(0.5, 1.5, 5)
>>> r = ifd(x, y, xout, maxorder=2)
>>> r.shape
(5, 4, 3)

see the examples/ directory for more examples.

Installation

Simplest way to install is to use the conda package manager:

$ conda install -c conda-forge finitediff pytest
$ python -m pytest --pyargs finitediff

tests should pass.

Manual installation

You can install finitediff by using pip:

$ python -m pip install --user finitediff

(you can skip the --user flag if you have got root permissions), to run the tests you need pytest too:

$ python -m pip install --user --upgrade pytest
$ python -m pytest --pyargs finitediff

Dependencies

You need either a C, C++ or a Fortran 90 compiler. On debian based linux systems you may install (all) by issuing:

$ sudo apt-get install gfortran g++ gcc

See setup.py for optional (Python) dependencies.

Citing

The algortihm is from the following paper:

http://dx.doi.org/10.1090/S0025-5718-1988-0935077-0

@article{fornberg_generation_1988,
  title={Generation of finite difference formulas on arbitrarily spaced grids},
  author={Fornberg, Bengt},
  journal={Mathematics of computation},
  volume={51},
  number={184},
  pages={699--706},
  year={1988}
  doi={10.1090/S0025-5718-1988-0935077-0}
}

You may want to, in addition to the paper, cite finitediff (for e.g. reproducibility), and you can get per-version DOIs from the zenodo archive:

Zenodo DOI

Licensing

The source code is Open Source and is released under the very permissive “simplified (2-clause) BSD license”. See LICENSE for further details.

Author

Björn Ingvar Dahlgren (gmail address: bjodah). See file AUTHORS in root for a list of all authors.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

finitediff-0.6.4.tar.gz (162.9 kB view details)

Uploaded Source

File details

Details for the file finitediff-0.6.4.tar.gz.

File metadata

  • Download URL: finitediff-0.6.4.tar.gz
  • Upload date:
  • Size: 162.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.23.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.10

File hashes

Hashes for finitediff-0.6.4.tar.gz
Algorithm Hash digest
SHA256 f05aee767f20f9f8b10b419ee6eb4f4ee6e712b341e4944a0f7c9ffedbf61572
MD5 31fbca9cb12b41157bc0f2cbea5ae742
BLAKE2b-256 e90388064592d07d24c94ba69ee66b70eede983f876ad2fa25cf5277ed1f9885

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page