Skip to main content

Fink anomaly detection model

Project description

Fink anomaly detection model

A set of modules for training models for finding anomalies in photometric data. There are currently two entry points via the console: fink_ad_model_train and get_anomaly_reactions.

fink_ad_model_train

The module trains the AADForest model using expert reactions from the C055ZJJ6N2AE channels in Slack and -1001898265997 in Telegram. It creates the following files:

  • _g_means.csv and _r_means.csv -- averages over the training dataset;
  • _reactions_g.csv and _reactions_r.csv -- training datasets for additional training of the AADForest algorithm, based on expert reactions from Slack and Telegram channels;

optional arguments: --dataset_dir DATASET_DIR Input dir for dataset (default: './lc_features_20210617_photometry_corrected.parquet')

--n_jobs N_JOBS
Number of threads (default: -1)

usage: fink_ad_model_train [-h] [--dataset_dir DATASET_DIR] [--n_jobs N_JOBS]

get_anomaly_reactions

Uploading anomaly reactions from messengers. It creates the following files:

  • _reactions_g.csv and _reactions_r.csv -- training datasets for additional training of the AADForest algorithm, based on expert reactions from Slack and Telegram channels;

optional arguments: --slack_channel SLACK_CHANNEL Slack Channel ID (default: 'C055ZJJ6N2AE') --tg_channel TG_CHANNEL Telegram Channel ID (default: -1001898265997)

usage: get_anomaly_reactions [-h] [--slack_channel SLACK_CHANNEL] [--tg_channel TG_CHANNEL]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fink_anomaly_detection_model-0.4.10.tar.gz (7.2 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file fink_anomaly_detection_model-0.4.10.tar.gz.

File metadata

File hashes

Hashes for fink_anomaly_detection_model-0.4.10.tar.gz
Algorithm Hash digest
SHA256 08680ccf442e532401b49295dca5ae36b0d91de3eb296c390e00e26429ede15c
MD5 bf718a5fc6a75b1e2ccdbb13e4611c41
BLAKE2b-256 e56073943da8388a46b9f2cad1069daa1ff811cc52596a81deaf975cf7321a45

See more details on using hashes here.

File details

Details for the file fink_anomaly_detection_model-0.4.10-py3-none-any.whl.

File metadata

File hashes

Hashes for fink_anomaly_detection_model-0.4.10-py3-none-any.whl
Algorithm Hash digest
SHA256 447ac7f9dc81a9516381aa8776fa89d663c09257ce9291862df5e156210447ae
MD5 c8df6e382437cdbe178ab2b3e7b996e5
BLAKE2b-256 106190e8e3e806be80c8dc147f3385115e338e8423fe58910658d0b6a754339c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page