Skip to main content

Fink SNAD Anomaly Detection Model

Project description

Fink anomaly detection model

A set of modules for training models for finding anomalies in photometric data. There are currently two entry points via the console: fink_ad_model_train and get_anomaly_reactions.

fink_ad_model_train

The module trains the AADForest model using expert reactions from the C055ZJJ6N2AE channels in Slack and -1001898265997 in Telegram. It creates the following files:

  • _g_means.csv and _r_means.csv -- averages over the training dataset;
  • _reactions_g.csv and _reactions_r.csv -- training datasets for additional training of the AADForest algorithm, based on expert reactions from Slack and Telegram channels;
  • forest_g_AAD.onnx -- model for _g filter
  • forest_r_AAD.onnx -- model for _r filter

optional arguments:

--dataset_dir DATASET_DIR Input dir for dataset (default: './lc_features_20210617_photometry_corrected.parquet')

--n_jobs N_JOBS
Number of threads (default: -1)

usage: fink_ad_model_train [-h] [--dataset_dir DATASET_DIR] [--n_jobs N_JOBS]

get_anomaly_reactions

Uploading anomaly reactions from messengers. It creates the following files:

  • _reactions_g.csv and _reactions_r.csv -- training datasets for additional training of the AADForest algorithm, based on expert reactions from Slack and Telegram channels;

optional arguments:

--slack_channel SLACK_CHANNEL Slack Channel ID (default: 'C055ZJJ6N2AE') --tg_channel TG_CHANNEL Telegram Channel ID (default: -1001898265997)

usage: get_anomaly_reactions [-h] [--slack_channel SLACK_CHANNEL] [--tg_channel TG_CHANNEL]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fink_anomaly_detection_model-0.4.14.tar.gz (7.3 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file fink_anomaly_detection_model-0.4.14.tar.gz.

File metadata

File hashes

Hashes for fink_anomaly_detection_model-0.4.14.tar.gz
Algorithm Hash digest
SHA256 0cb015a19e75ac563af675e23aa8f319260f085ee04b6b26f876215192bacfc1
MD5 a9c03708156a7262ed1bf1d12d1e5620
BLAKE2b-256 26deb67f638e832c7de5e3d26f0842c03b3ed6af73847c35237c42f37f737fd7

See more details on using hashes here.

File details

Details for the file fink_anomaly_detection_model-0.4.14-py3-none-any.whl.

File metadata

File hashes

Hashes for fink_anomaly_detection_model-0.4.14-py3-none-any.whl
Algorithm Hash digest
SHA256 56355df2cc173befcce7ed00f7120f03a6cadc687126ad10d66d274bc3ac395e
MD5 9f7ea65a9e25cec2540529bc4528098e
BLAKE2b-256 b57a79ca075bc4b69da293f86bfb6f81001cc2a5ad3aff2d541786651164c951

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page