Skip to main content

Fink SNAD Anomaly Detection Model

Project description

Fink anomaly detection model

A set of modules for training models for finding anomalies in photometric data. There are currently two entry points via the console: fink_ad_model_train and get_anomaly_reactions.

fink_ad_model_train

The module trains the AADForest model using expert reactions from the C055ZJJ6N2AE channels in Slack and -1001898265997 in Telegram. It creates the following files:

  • _g_means.csv and _r_means.csv -- averages over the training dataset;
  • _reactions_g.csv and _reactions_r.csv -- training datasets for additional training of the AADForest algorithm, based on expert reactions from Slack and Telegram channels;
  • forest_g_AAD.onnx -- model for _g filter
  • forest_r_AAD.onnx -- model for _r filter

optional arguments:

--dataset_dir DATASET_DIR Input dir for dataset (default: './lc_features_20210617_photometry_corrected.parquet')

--n_jobs N_JOBS
Number of threads (default: -1)

usage: fink_ad_model_train [-h] [--dataset_dir DATASET_DIR] [--n_jobs N_JOBS]

get_anomaly_reactions

Uploading anomaly reactions from messengers. It creates the following files:

  • _reactions_g.csv and _reactions_r.csv -- training datasets for additional training of the AADForest algorithm, based on expert reactions from Slack and Telegram channels;

optional arguments:

--slack_channel SLACK_CHANNEL Slack Channel ID (default: 'C055ZJJ6N2AE')

--tg_channel TG_CHANNEL Telegram Channel ID (default: -1001898265997)

usage: get_anomaly_reactions [-h] [--slack_channel SLACK_CHANNEL] [--tg_channel TG_CHANNEL]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fink_anomaly_detection_model-0.4.15.tar.gz (7.3 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file fink_anomaly_detection_model-0.4.15.tar.gz.

File metadata

File hashes

Hashes for fink_anomaly_detection_model-0.4.15.tar.gz
Algorithm Hash digest
SHA256 f43570c1a3a81c4d8c3625e484dbca4beb389601c492af708f44d75008991d22
MD5 7cf56a06dc16e76504adc830a5c782bb
BLAKE2b-256 5c7b81aea29fd2a48369bdd9a9b919ac663c981ee1104a92e936278d0506134a

See more details on using hashes here.

File details

Details for the file fink_anomaly_detection_model-0.4.15-py3-none-any.whl.

File metadata

File hashes

Hashes for fink_anomaly_detection_model-0.4.15-py3-none-any.whl
Algorithm Hash digest
SHA256 2a25d5ccd896eba8f7dacba519c0b6aca58639b209647fdf00da76e1129c1b65
MD5 ecb4c1a4360f874ff6cfc726a54c130d
BLAKE2b-256 b9a317e344d3f511de17bafa1f9418eb8c3a59956f8b1daf2b363a80efda423b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page