Skip to main content

Fink SNAD Anomaly Detection Model

Project description

Fink anomaly detection model

A set of modules for training models for finding anomalies in photometric data. There are currently two entry points via the console: fink_ad_model_train and get_anomaly_reactions.

fink_ad_model_train

The module trains the AADForest model using expert reactions from the C055ZJJ6N2AE channels in Slack and -1001898265997 in Telegram. It creates the following files:

  • _g_means.csv and _r_means.csv -- averages over the training dataset;
  • _reactions_g.csv and _reactions_r.csv -- training datasets for additional training of the AADForest algorithm, based on expert reactions from Slack and Telegram channels;
  • forest_g_AAD.onnx -- model for _g filter
  • forest_r_AAD.onnx -- model for _r filter

optional arguments:

--dataset_dir DATASET_DIR Input dir for dataset (default: './lc_features_20210617_photometry_corrected.parquet')

--n_jobs N_JOBS
Number of threads (default: -1)

usage: fink_ad_model_train [-h] [--dataset_dir DATASET_DIR] [--n_jobs N_JOBS]

get_anomaly_reactions

Uploading anomaly reactions from messengers. It creates the following files:

  • _reactions_g.csv and _reactions_r.csv -- training datasets for additional training of the AADForest algorithm, based on expert reactions from Slack and Telegram channels;

optional arguments:

--slack_channel SLACK_CHANNEL Slack Channel ID (default: 'C055ZJJ6N2AE')

--tg_channel TG_CHANNEL Telegram Channel ID (default: -1001898265997)

usage: get_anomaly_reactions [-h] [--slack_channel SLACK_CHANNEL] [--tg_channel TG_CHANNEL]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fink_anomaly_detection_model-0.4.18.tar.gz (7.4 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file fink_anomaly_detection_model-0.4.18.tar.gz.

File metadata

File hashes

Hashes for fink_anomaly_detection_model-0.4.18.tar.gz
Algorithm Hash digest
SHA256 f90f79efd8f79b4204738cbcf353b2388c10eaa16c5bebb5ca5ba4efe758d5a8
MD5 7de47b8ef11d411aebe5f9b3051f54f2
BLAKE2b-256 024ca20f3afc59dec066348ec21ce1b7f29638ff5cbb0391f770176ed45265d9

See more details on using hashes here.

File details

Details for the file fink_anomaly_detection_model-0.4.18-py3-none-any.whl.

File metadata

File hashes

Hashes for fink_anomaly_detection_model-0.4.18-py3-none-any.whl
Algorithm Hash digest
SHA256 b5b5e291c6575a13425f044c33b3878c45af317af3ebf7e32cdec3aad90a8797
MD5 0785777f65dab5289b66e6421a09463d
BLAKE2b-256 db13e63332edc03c1f4beea71c8bd4df2f6bb66e1409a69dc411ec7dfc3cf0ba

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page