Skip to main content

Fink SNAD Anomaly Detection Model

Project description

Fink anomaly detection model

A set of modules for training models for finding anomalies in photometric data. There are currently two entry points via the console: fink_ad_model_train and get_anomaly_reactions.

fink_ad_model_train

The module trains the AADForest model using expert reactions from the C055ZJJ6N2AE channels in Slack and -1001898265997 in Telegram. It creates the following files:

  • _g_means.csv and _r_means.csv -- averages over the training dataset;
  • _reactions_g.csv and _reactions_r.csv -- training datasets for additional training of the AADForest algorithm, based on expert reactions from Slack and Telegram channels;
  • forest_g_AAD.onnx -- model for _g filter
  • forest_r_AAD.onnx -- model for _r filter

optional arguments:

--dataset_dir DATASET_DIR Input dir for dataset (default: './lc_features_20210617_photometry_corrected.parquet')

--n_jobs N_JOBS
Number of threads (default: -1)

usage: fink_ad_model_train [-h] [--dataset_dir DATASET_DIR] [--n_jobs N_JOBS]

get_anomaly_reactions

Uploading anomaly reactions from messengers. It creates the following files:

  • _reactions_g.csv and _reactions_r.csv -- training datasets for additional training of the AADForest algorithm, based on expert reactions from Slack and Telegram channels;

optional arguments:

--slack_channel SLACK_CHANNEL Slack Channel ID (default: 'C055ZJJ6N2AE')

--tg_channel TG_CHANNEL Telegram Channel ID (default: -1001898265997)

usage: get_anomaly_reactions [-h] [--slack_channel SLACK_CHANNEL] [--tg_channel TG_CHANNEL]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fink_anomaly_detection_model-0.4.19.tar.gz (7.4 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file fink_anomaly_detection_model-0.4.19.tar.gz.

File metadata

File hashes

Hashes for fink_anomaly_detection_model-0.4.19.tar.gz
Algorithm Hash digest
SHA256 8ebd1ed69248ef1c8bfdaf2a5dd68440f8300ad9e7a8b169891c8611ca95bc6f
MD5 93914a9cde226133e1fbbb6a620df53a
BLAKE2b-256 d6321f38fdea7d3b139ee4f0f144258a168bae027283c0218b4340d75c6b8b90

See more details on using hashes here.

File details

Details for the file fink_anomaly_detection_model-0.4.19-py3-none-any.whl.

File metadata

File hashes

Hashes for fink_anomaly_detection_model-0.4.19-py3-none-any.whl
Algorithm Hash digest
SHA256 5463d493003c7878fe2a49a6cf4b760c2dde9ece5b2692e2f7b5e73ab52172ed
MD5 68dce94a2b2cf4eb343180000bc21f0d
BLAKE2b-256 350b28d53e4ec3cd907010d61c9b4cdae9c95c2e73fcfb487fcebea3fc3f87ac

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page